
  

  

Abstract— This paper presents a fuzzy logic model to decode 
the hand posture from electro-cortico graphic (ECoG) activity 
of the motor cortical areas. One subject was implanted with a 
micro-ECoG electrode array on the surface of the motor 
cortex. Neural signals were recorded from 14 electrodes on this 
array while Subject participated in three reach and grasp 
sessions. In each session, Subject reached and grasped a 
wooden toy hammer for five times. Optimal channels/electrodes 
which were active during the task were selected. Power spectral 
densities of optimal channels averaged over a time period of 1/2 
second before the onset of the movement and 1 second after the 
onset of the movement were fed into a fuzzy logic model. This 
model decoded whether the posture of the hand is open or 
closed with 80% accuracy. Hand postures along the task time 
were decoded by using the output from the fuzzy logic model by 
two methods (i) velocity based decoding (ii) acceleration based 
decoding. The latter performed better when hand postures 
predicted by the model were compared to postures recorded by 
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a data glove during the experiment. This fuzzy logic model was 
imported to MATLAB®SIMULINK to control a virtual hand. 

I. INTRODUCTION 
RAIN-COMPUTER interface (BCI) or direct brain 
interface (DBI) in the near future is expected to be a 

promising technology in providing help to control assistive 
devices in people suffering with spinal cord injury (SCI), 
cerebral palsy, myodystrophy and other debilitating injuries. 
Recent advances in BCI relevant to this paper include 
controlling cursor movement on computer screen in one or 
more dimensions [1], moving a robotic arm [2], etc. Robotic 
or prosthetic hand control via neural signals is of vital 
importance in providing assistance for limb amputees who 
have lost most of the major muscles. Even for amputees with 
some muscles left intact, muscular control of actuator of a 
prosthetic hand faces challenges when extracting the control 
signal from noisy muscle activity. In this paper a fuzzy logic 
model is presented which decodes the human hand posture 
using neural/cortical activity.  

Electro-corticography (ECoG) has been shown to be a 
promising modality in extracting neural signals with 
sufficient neural information useful in decoding movement 
related kinematics [1]. In ECoG, electrodes are placed on the 
surface of required areas of the brain for e.g. motor cortex, 
auditory cortex, etc. This study used a micro-ECoG 
electrode array as shown in Fig.1. 

Power spectral densities of the selected channels/ 
electrodes in the high frequency range (60-120Hz) were fed 
into a fuzzy logic model to get an output which decodes the 
hand posture by scaling the opening of the hand (0—Open, 
1—Closed). Fuzzy logic models are known to accommodate 
the fuzziness in the real world applications [3]. Fuzzy logic 
models can be generated by using two approaches—(i) 
Sugeno and (ii) Mamdani. In the current paper Sugeno 
approach was chosen as it is computationally efficient for 
optimization and adaptive techniques which makes it 
favorable for real time applications [3]. Fuzzy logic models 
can be easily implemented in hardware using micro 
controllers like Motorola HC12 [4]. 

 

II. MATERIALS AND METHODS 

A. Human subjects and the behavioral paradigm 
This study was approved by the University of Pittsburgh 

Institutional Review Board and followed all guidelines for 
human subject research. The subject was a 17-year old right-
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handed female undergoing monitoring for intractable 
epilepsy with seizure foci in the left temporal lobe. At the 
beginning of each session, about one minute of baseline data 
were acquired when the subject relaxed with eyes open. 
During the task, upon a go cue, Subject was instructed to 
perform reach and grasp task for the wooden toy hammer 
placed about a distance of 15 cm from the resting position of 
the hand, and the BCI2000 [5] software was used to prompt 
the Subject to move. Finger movements of hand were 
recorded with a 14-sensor 5DT data glove. 10 of the sensors 
corresponding to proximal interphalangeal and metacarpal 
phalanageal joints were used in the analysis. Three sessions 
of five repetitions each, were conducted.  

B. ECoG recording 
A regular clinical ECoG grid (Ad-Tech, Corp.) with 32 

disc electrodes was implanted subdurally over the left 
temporal lobe and inferior frontal lobe for epilepsy seizure 
monitoring. In addition, an experimental micro-ECoG grid 
was implanted subdurally superior-posterior to the large 
ECoG grid and anterior to the central sulcus over the motor 
cortical area. The micro-ECoG grid (Ad-Tech, Corp.) 
consisted of 16 disc electrodes arranged in a 4-by-4 pattern 
(Fig. 1). Two corner electrodes were designated as reference 
electrodes. All ECoG signals were band-pass filtered 
between 0.1 to 200 Hz and sampled at 1200 Hz using 
g.USBamp (Guger Technologies, OEG) in conjunction with 
the BCI2000 software. Neural signals recorded from 14 
electrodes in the micro-ECoG grid were used in the current 
paper.  

C. Analysis 
Neural signals recorded from the micro-electrode’s 14 

channels were band pass filtered 0.1—200Hz. Time-
frequency analysis was performed on each of the channels 
for each task of reaching and grasping. A typical time-
frequency plot of the neural activity is shown in Fig. 3 under 
Results. For all the channels strong activation in power was 
seen in high frequency range (60-120Hz) 0.5 seconds after 
the GO cue.  

D. Fuzzy Logic Model 
Power spectral densities (PSDs) of the best channels 

averaged over a time period of 0.5 seconds before the 
movement onset and 1 second after the movement onset 
were used to train the fuzzy logic model. For each channel, 
PSD before movement onset corresponded to open hand 
posture (an output value of 0) and PSD after movement 
onset corresponded to flexed or closed hand posture when 
grasping the toy hammer (an output value of 1). Among the 
three sessions of data collected, two were used for training 
and one was used for testing the model. Four membership 
functions of type gbellmf (generalized bell-shaped 
membership function) were used in generating this model. 
Sugeno method was used in generating this model using 
anfisedit in MATLAB®. 

E. Simulation in MATLAB®SIMULINK 
Fuzzy logic model thus generated was imported as a block 
into MATLAB®SIMULINK as shown in Fig.2. Here the 
neural data fed is PSD of high frequency band (60-120Hz) 
during the task time (0.5 sec before movement onset to 1 sec 
after movement onset). When the simulation is executed, 
fuzzy logic model/controller closes or flexes the hand as task 
time progresses. The output from the fuzzy logic controller 
is used to predict of flexion of joints which are used to move 
the hand in virtual reality (VR) environment in real time. 
The neural signals can possibly encode position, velocity 
and acceleration in hand kinematics. Joint prediction was 
either velocity based decoding or acceleration based 
decoding. For velocity based decoding the output from the 
model is integrated once to obtain joint positions. Similarly, 
for acceleration based decoding the output from the model is 
integrated twice to obtain the joint positions. Predicted joint 
positions are stored and compared against the recorded joint 
positions from 5DT data glove. 

 
Fig. 1. Head x-ray of the Subject highlighting the 16-conatct micro-
ECoG grid highlighted in the yellow Square. 

 
                                                                                          
Fig. 2.  SIMULINK model: Neural data is fed into fuzzy logic 
controller. The output of the controller is fed into joint calibration 
module and calibrated joints move the virtual hand. 
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III. RESULTS 
Time-frequency analysis performed over one of the 

channels is illustrated in Fig.3. The black line (Time 0) 
represents the moment at which the “GO” cue was given. As 
it is evident, after about 0.5s from “GO” cue the high 
frequency band shows significant increase in power, 
demonstrating task-related modulation. 

Fig. 4 shows the results obtained from the fuzzy logic 
model also known as fuzzy inference system (FIS). Fig.4 
Top depicts the input-output relationship between the power 
spectral density of a channel and the hand posture (0—open, 
1—closed). Bottom two plots in Fig.4 show the training and 
the testing errors respectively. A training error of 0.205 and 
a testing error of 0.213 were obtained from the model. This 
means in predicting the open or close (0 or 1) of the posture 
there can be an average error of 0.2. In other words, model 
prediction is 80% accurate. 

Fuzzy logic model was used to predict the hand postures 
across the time of the task using SIMULINK. Only one task 
modulated channel was used here. As discussed in Methods, 
fuzzy logic model output was used to decode (i) velocity (ii) 
acceleration of the joints. For velocity based decoding the 
output from the model is integrated once to obtain joint 
position. Similarly for acceleration based decoding the 
output from the model is integrated twice to obtain the joint 
position. Figures 5 and 6 illustrate the comparison between 
model-predicted hand postures, and the hand postures 
recorded by the data glove during the experiment. Please 
note that although the hand considered here includes 10 
individual joints the model output which ranges from 0 to 1 
is used as universal scale to all the joints. In Fig.5 red curve 
corresponds to the position predicted by the model when 
velocity encoding was used. Error bars indicate variability 
across five trials. The blue curve corresponds to the mean of 
positions across all joints across five trials recorded by the 
data glove. In Fig.6 black curve corresponds to the position 
predicted by the model when acceleration encoding was 
used. Error bars indicate variability across five trials. The 
blue curve corresponds to the mean of positions across all 
joints across five trials recorded by the data glove.   

 
Fig. 3.  Time frequency analysis showing strong activation in high 
frequency range (60-120Hz) between 0.5s—1.5s.  0s corresponds to 
“GO” cue. 

 
Fig. 4. Top: Flexion of hand vs. the power spectral density of the 
channel averaged over the high frequency range (60-120Hz). 
Middle: Training data (o) and Fuzzy logic model output (+). 
Bottom: Testing data (·) and Fuzzy logic model output (+) 

 
Fig. 5. A Comparison between model-predicted postures when 
velocity encoding was used and actual postures recorded by the data 
glove. Red curve corresponds to the position predicted by the model 
when velocity encoding was used. Error bars indicate variability 
across five trials. The blue curve corresponds to the mean of 
positions across all joints across five trials recorded by the data 
glove. 
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IV. DISCUSSION 
This paper adapted a fuzzy logic approach to demonstrate 

the control of virtual hand directly using the human motor 
cortical activity. Although the model has single output which 
decodes whether the hand posture is closed or open, it is 
capable of estimating the variation of intermediate postures 
along the task time. Fuzzy logic models exploiting multiple 
membership functions are proved to be skilled in 
representing the fuzziness in the real world applications [3]. 
Thus the model results in a smooth movement across joints 
of the hand, unlike a binary switch which results in abrupt 
movements. Decoding the hand posture by itself is a 
complex optimization problem including more than 27 
dimensions or Degrees of Freedom (DoF) due to the 
versatile architecture of the hands. In this paper, the problem 
was simplified by limiting the decoding of hand posture as 
one single unit or dimension. The biomechanical constraints 
of the human hand [6] pose restrictions to the independence 
of individual digits/fingers. In particular, in movements such 
as reaching and grasping, similarity between angular 
velocity profiles across the joints have been observed 
previously in [7]. Although the current model is not capable 
of decoding a virtual hand performing complex movements 
involving coordinated movements among multiple fingers, 
such as playing a piano, it serves as a sufficient decoder for 
smooth transformation of the hand posture across task time.  

Several parameters of hand kinematics are represented in 
the motor cortex, cerebellum, basal ganglia, etc. These 
parameters are velocity, acceleration and position [8]. For 
decoding the hand postures across time two methods were 
used—velocity based decoding and acceleration based 
decoding. Position based decoding was not considered here 
as it led to abrupt movements of virtual hand. As shown in 
the results velocity and acceleration decoding led to better 
prediction of the posture across the task time.     

CONCLUSION 
This paper demonstrated the feasibility of controlling 

opening and closing of a virtual hand directly using human 
cortical activity recorded with micro-ECoG electrodes. One 
limitation to neural network or fuzzy logic type of models is 
the training time of the model. But once the fuzzy logic 
model, such as one presented here, is trained it can be used 
in real time control of a virtual hand. The model is to be 
extended to control kinematics of a real prosthetic hand. The 
model and methods presented in this paper are to be 
substantiated over more number of subjects. We view these 
as future scope.  
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Fig. 6. A Comparison between model-predicted postures when 
velocity encoding was used and actual postures recorded by the data 
glove. Black curve corresponds to the position predicted by the 
model when acceleration encoding was used. Error bars indicate 
variability across five trials. The blue curve corresponds to the mean 
of positions across all joints across five trials recorded by the data 
glove. 
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