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� Abstract Control of prostheses using cortical signals is based on three elements:
chronic microelectrode arrays, extraction algorithms, and prosthetic effectors. Arrays
of microelectrodes are permanently implanted in cerebral cortex. These arrays must
record populations of single- and multiunit activity indefinitely. Information containing
position and velocity correlates of animate movement needs to be extracted continu-
ously in real time from the recorded activity. Prosthetic arms, the current effectors used
in this work, need to have the agility and configuration of natural arms. Demonstrations
using closed-loop control show that subjects change their neural activity to improve
performance with these devices. Adaptive-learning algorithms that capitalize on these
improvements show that this technology has the capability of restoring much of the
arm movement lost with immobilizing deficits.

INTRODUCTION

Microelectrodes embedded chronically in the cerebral cortex hold promise for
using neural activity to control devices with enough speed and agility to replace
natural, animate movements in paralyzed individuals. Known as cortical neural
prostheses (CNPs), devices based on this technology are a subset of neural prosthet-
ics, a larger category that includes stimulating, as well as recording, electrodes. For
many years, patients have been implanted with stimulation-based devices designed
to activate neurons in different parts of the CNS. This class of neural prostheses is
now used extensively in applications to restore hearing and alleviate the symptoms
of Parkinson’s disease. However, the mirror technology used to record signals from
neurons has been applied rarely to human patients and to this point is found only
in research settings. These devices, called brain-computer interfaces (BCIs), link
the brain to the external world by computer processing the recorded neural signal
to extract the subject’s command to control an external device. For those who are
movement impaired, recording-based neural prostheses may enable communica-
tion or movement. Likely beneficiaries of this evolving technology include people
paralyzed by head or spinal-cord trauma or those with deficits caused by stroke,
amyotrophic lateral sclerosis (ALS), cerebral palsy, and multiple sclerosis. Their
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paralyses may range from complete—with no respiratory or eye movements—to
quadri- and paraplegia. Whereas some BCI devices are designed for communi-
cation only (i.e., electroencephalography (EEG)-based, word-spelling programs),
CNPs, by using single-cell activity, aim to restore movement as well. The scope
of this review is limited to CNPs, specifically those designed to record signals in
a form that can be used by the subject to control arm movement.

BACKGROUND

The basic theorem in this field states that within the discharge pattern of cortical
neurons, there exists a rather direct representation of the desired movement. This
movement image has been documented only in the last 20 years. Before this, in-
vestigators assumed that the primary motor cortex, the cortical region most closely
related to movement, drove muscle activation, directly. Even though this region
seemed to be anatomically and topographically organized into a body map on the
cortical surface, recorded signals from a purely muscle-based coordinate system
would be computationally difficult to transform into natural movements of the
limb. Certainly the transformation of muscle activation to muscle force alone is a
difficult nonlinear problem. Given a force and a muscle length, the way in which a
limb is displaced following contraction of a specific muscle is dependent on limb
geometry, the orientation of the limb relative to external forces (loads and gravity),
and the history (inertia) of the moving segments at the time of contraction. Factor
in the complexity of a redundant muscle system with many effectors operating si-
multaneously, and the problem of calculating the hand’s trajectory from a sample
of muscle activations becomes a very difficult engineering problem. Yet these are
precisely the problems confronting designers of functional electrical stimulation
(FES) systems. Electrical stimulation of paralyzed muscles must produce coordi-
nated shortening of the muscles around the limb’s joints that move the attached
segments to achieve the proper end point displacement. Current CNPs provide a
control signal in end point coordinates (see below). This signal, combined with the
problems just enumerated and the general difficulty inherent in long-term electri-
cal activation of limb muscles, is why initial implementations have been based on
the control of artificial rather than real arms.

End point (the end of the arm or the hand) movement is represented simply in
the activity of motor cortical cells. Georgopoulos and his colleagues showed that
motor cortical discharge rate was directionally tuned as monkeys made reaching
movements (Georgopoulos et al. 1982, 1986). Movement direction was measured
at the hand when all seven degrees of freedom in the shoulder, arm, and wrist were
free to move. The tuning function (cosine-shaped) relating discharge rate to direc-
tion is broad, covering all movement directions, and shows that each cell changes
its discharge rate for all directions, or conversely, that all cells actively code each
direction (simultaneous activity). By itself, the tuning function of a single cell is
not very useful for decoding direction because a single direction will correspond
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to more than one discharge rate, and the broadness of the function means that small
fluctuations of discharge rate will correspond to large changes in direction. How-
ever, specific directions were well predicted if weighted responses from many
cells were added together vectorially (Georgopoulos et al. 1984) using a linear
method termed the population vector algorithm (PVA). This direction was instan-
taneously and continuously represented in the cortical activity throughout move-
ment (Schwartz 1992). The magnitude as well as the direction of this neural vec-
tor representation was highly correlated with movement velocity (Georgopoulos
et al. 1988, Moran & Schwartz 1999). With these properties, the movement tra-
jectory (time pattern of hand positions) could be extracted from the population
activity for reaching movements and for a variety of drawing tasks (Schwartz
1993, Schwartz 1994, Schwartz & Moran 1999).

Why is it so desirable to extract a trajectory signal from the brain? The trajec-
tory of the end point contains natural characteristics of animate motion. Examples
of these invariant features are the bell-shaped velocity profile (Morasso 1981) of
reaching movement and the two-thirds power law pertaining to drawing and hand-
writing (Viviani & Terzuolo 1982). Although prosthetic devices can be effective
without operating like natural limbs, the embodiment of these characteristics is
desirable in terms of biomechanical compatibility with other body parts, ease of
control, and aesthetics.

APPLICATION

These experimental results show that accurate predictions of arm movement can
be generated by recoding activity from a population of cortical neurons. For this
to be a real-time control signal, parallel recordings must be made from multiple
electrodes. In addition, this signal should be dependable—units (preferably the
same ones) should be able to be discriminated for years from each electrode.
Recording single-unit activity this way requires chronic intracortical implantation
of microelectrodes. Alternatively, noninvasive EEG scalp electrodes can record
electric fields useful for prosthetic control. However, aside from a brief comparison
to EEG prostheses, this review concentrates on intracortical, single-unit activity
used for CNPs.

Most of the work in this field presumes that movement-related information in
the recorded unit activity is encoded as firing rate. For single units, this rate is the
inverse of the time interval between action potentials of a single neuron, and for
multiunit clusters the analogous interval is measured between amplitude crossings
of the group’s summed electrical signal. Alternatively, power within a frequency
ban of multiunit activity may be taken as an activity measure. Although informa-
tion may be contained in the synchronous activity of neurons (Butler et al. 1992,
Hatsopoulos et al. 1998, Mazurek & Shadlen 2002), so far the amount of infor-
mation in such a code seems relatively small. Extraction algorithms convert firing
rate to movement displacement. Typically, firing rates from many different units
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recorded simultaneously are used as input to the algorithm, and hand position is the
output. Real-time decoding is needed for prosthetic control, so instantaneous firing
rate calculated in a bin (e.g., 10–100 ms wide) is fed continuously to the algorithm,
producing a continuous stream of hand positions. CNPs operate by recording mul-
tiple channels of single-unit activity simultaneously, conditioning these signals,
usually by discriminating spike activity from the recorded signal, processing the
spike trains with an extraction algorithm to generate a movement trajectory, and fi-
nally, feeding the extracted movement trajectory to a computer graphics display or
a robot arm controller. Note, the control scheme does not end with movement gen-
eration. Rather, this is an example of closed-loop control where subjects observe
the generated movement and modify their underlying neural activity to change the
movement in a continuous fashion.

Every CNP is composed of three building blocks. The first step is to record the
type of neural activity from which a consistent control signal can be extracted.
Extraction is based on the concept of a neural code—recorded signals need to be
deciphered and related to a desired movement. Finally, the control made possible
by the extracted signal is implemented either in a computer display, an active
prosthetic arm or other mechanical device, or by using electrical activation of
the subject’s muscles. In summary, the three CNP components are

1. microelectrodes and recording electronics. Chronic electrodes provide many
individual recording sites implanted permanently in the cerebral cortex. The
recording electronics condition and discriminate the recorded signal. An
excellent review on this technology is available (Schmidt 1999).

2. extraction algorithms. These are computer programs running in real time
that take the conditioned data (e.g., action potential events or spike times)
and convert them to end point positions.

3. actuators. These can be animated computer displays, movement of a robot
arm, or activation of muscles in a subject’s own arm.

This review addresses the first two topics. The control of virtual-reality, com-
puter displays and tele-robotic actuators are beyond the scope of this review.

ELECTRODES

Microwires

The first chronic recording electrodes were microwires. Developed over the last
40 years, these electrodes consist of fine wires 20 to 50 microns in diameter. They
are generally composed of stainless steel or tungsten and insulated with teflon
or polyimide. The tips may be etched or ground, but more often they are simply
cut with a pair of scissors, leaving a planar recording surface. The wires can be
arranged as arrays (for instance, in two rows of eight wires) by soldering them to
a small connector (Williams et al. 1999, Nicolelis et al. 1999). Spacing between
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wires (100–300 microns) is maintained either with polyethylene glycol or methyl
methacrylate. Wire arrays are surgically implanted in the anesthetized animal dur-
ing a procedure that takes 8 to 10 h (rhesus monkey, four arrays, 64 electrodes).
The cortex is exposed through a hole in the skull. After investigators remove the
dura, the array is advanced slowly with a micromanipulator (100 microns/min)
to minimize dimpling of the cortical surface. Although some anesthetics (i.e., ke-
tamine) permit enough spontaneous or sensory-invoked activity in motor cortex
to serve as an indicator of how far to advance the arrays, with gas inhalants such
as fluorothane, spontaneous neural activity is not detectable with microwires in
the motor cortex, making the optimal insertion depth uncertain. This uncertainty
may leave the tips in a layer of cortex where it is difficult to record unitary activity
and may be a key reason for subsequent recording failures. For exposed macaque
cortex, the best depths are ≤2 mm below the surface. The shafts of the arrays are
glued to the bone, so the depth of the electrode tip relative to the skull is perma-
nently fixed. However, the cortical surface may move after the surgery, perhaps
rebounding, if it had been dimpled, or shrinking, if swelling had taken place. The
causes and dynamics of this phenomenon are not understood, but shrinking or
expansion of the brain, however slight, is a key issue because it will change the
relative position of the electrode tip, perhaps moving it to different cortical layers
or into the underlying white matter.

Silicon Micromachined Microprobes

A number of silicon substrate microprobes have been developed (Hetke &
Anderson 2002, Jones et al. 1992). Two types are reviewed here. The first are
planar devices from the University of Michigan, and the second is the array devel-
oped at the University of Utah.

The Michigan probe is somewhat unique, in that boron diffusion is used as an
initial processing step of the silicon wafer to delineate the shape of the probe. A
number of steps are used to deposit silicon dioxide and silicon nitride for insulation,
and this is followed by photolithography to pattern the interconnects and recording
sites. Iridium is deposited on the exposed recording sites as the electrode surface.
This fabrication allows for a wide variety of probe shapes and configurations. A
standard probe for chronic implants consists of four parallel, dagger-like shanks
connected to a microsilicon ribbon cable. The shanks are 15 microns thick and
50 to 100 microns wide, with shank tips spaced 150 microns apart. The probe
designed for monkey recording is 3.8 mm long and has 4 recording shafts placed
along the shaft. The ribbon cable is flexible and has a connector at the end. Probes
are implanted with a pair of forceps through the open dura. The connector is glued
to the skull, but in contrast to the microwires, the semiflexible ribbon cable allows
the probes to “float” in the brain (e.g., move up and down with the cortex as it
pulses). Because the multiple recording sites are placed along the shaft, at least
some of the sites will be situated at cortical depths desirable for good extracellular
recordings.
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Investigators used a completely different approach for the probe designed at the
University of Utah, which is now commercially available through Cyberkinetics,
Inc. The fabrication of this device begins with a solid block of silicon. Checker-
board slices with a microsaw are cut most of the way through the block. Etching
of the block then results in a three-dimensional, 10 × 10 array of needles on a
4 × 4–mm square. Additional processing applies metal and insulation layers. The
final array has a recording site at the tip of each shank with its interconnect running
down the shank and through the back of the block, where gold pads are located
for wire bonding to leads projecting to a skull connector. The 35- to 75-micron-
long recording tips are platinum, with an impedance of 100 to 500 kOhms. The
shank lengths range from 1.0 to 1.5 mm. Implantation of the array is achieved
by injecting the array through the reflected dura with a special high-speed device
that overcomes the inertia of the cortex. Leads are flexible enough to allow the
array to “float” on the cortical surface. This design has the advantage of placing
a relatively large number of recording sites in a compact volume of cortex. Fur-
thermore, conventional wisdom suggests that a recording site at the tip is ideal in
terms of sampling the potential field of an action potential and is the place least
likely to experience tissue damage from electrode insertion (see below). However,
with a single recording site at a fixed cortical depth, the Utah array suffers from
the same placement problem as microwires. The length of the shanks is limited
to 1.5 mm because of the way the device is fabricated from a single block of
silicon.

Tissue Reactions

One common problem of all chronically implanted electrodes is that of the tissue-
electrode interface. Any object inserted into the brain damages the parenchyma.
During insertion, blood vessels are disrupted and microhemorrhage is common.
Neurons are either ripped or sliced as the electrode is inserted. Microglia derived
from monocytes are activated, and astrocytes begin to proliferate, which forms a
loose encapsulation around the electrode for a considerable distance (100–200 mi-
crons). A poorly understood cascade of signaling events stemming from disruption
of vessels and the blood-brain barrier takes place, which leads to an infiltration
of nonlocal cellular elements, immune components, and epithelial cell prolifera-
tion. Local changes in the extracellular concentration of potassium and calcium
may silence the activity of nearby neurons through a local mechanism similar to
spreading depression (Somjen 2001). Most histological studies report that neuron
density is near normal at distances within 100 microns of the electrode after sev-
eral weeks. However, mechanical considerations would suggest that the kill zone
around the electrode could be larger if the electrode is not inserted exactly at 90◦

perpendicular to the cortical surface (Edell et al. 1992). Initially, few neurons could
be found within 50 to 100 microns of the implant site, but the cells looked normal
outside this zone. After four to six weeks, this sparse zone decreased, with healthy-
appearing neurons apparent closer to the electrode. Early on, astrocytes, identified
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by glial fibrillary acetic protein (GFAP) could be seen in the margins of the sheath,
with processes infiltrating and surrounding the implant site. As neurons filled in
around the implant, the perielectrode sheath became more compact with heavy
GFAP staining, but cell bodies and processes could not be readily distinguished in
the highly compressed tissue.

Astrocytes, the most prevalent type of glial cell, play a role in supporting brain
tissue and nourishing neurons (for instance, they supply neurons with lactate de-
rived from glucose). They also play a role in scar formation. Another type of glia,
the microglia, are CNS analogs of macrophages. These are mobile cells that en-
gulf fragments of damaged cells. Microglia are the other major component of the
electrode encapsulation (Szarowski et al. 2003). Another component of reactive
astrocyte response, identified by the marker vimentin, was present in the encap-
sulation (Szarowski et al. 2003). Vimentin is thought to be specific to immature
astrocytes, and in this study, cells staining positive for this marker had long thin
processes extending more than 100 microns into the sheath. These astrocytes were
found much less frequently than those positive for GFAP, and they formed a thinner
layer than their counterparts. Organization of the vimentin layer followed a slightly
different time course than the GFAP astrocytes and microglia, both of which had
similar morphology within the sheath over time.

This multicomponent process following electrode insertion is still not well
understood. The shape and size of the electrode, and the way it is inserted, are
probably critical factors in the type of damage imparted (Edell et al. 1992). A
cylindrical shape may be ideal for pushing blood vessels and cells away without
damage. However, because of the filamentous nature of neural tissue, forces from
this displacement may propagate through the tissue, resulting in tearing, stretching,
and compression. Alternatively, a conical electrode shape with a sharp tip will cut
a hole through the tissue, leaving adjacent tissue intact as the electrode slips by.
But a pressure band will eventually build in front of the electrode as some of the
tissue is compressed, and this pressure will be transmitted to nearby tissue. A flat,
sword-like tip may be preferable because its slicing action would cause minimal
tissue compression. Recently, investigators compared different electrode shapes
and insertion techniques (Szarowski et al. 2003). Although the size and shape of
the electrode made a difference in the reaction around the electrode in the first one
to two weeks after implantation, histology taken at longer intervals showed little
difference except for the volume of tissue affected. Insertion technique appeared
to make little difference.

The second component of the implant reaction is a chronic process, taking place
on a slower timescale after implantation, and results in the formation of a tight
cellular sheath around the electrode (Turner et al. 1999). Whereas the sheath was
completely formed around the insertion site, composed of loosely packed cells and
2 layers thick in the first 2 weeks postinsertion, by 6 to 12 weeks, the sheath had
become thinner and tighter with 4 to 6 layers of compact, dense cells with small
nuclei, effectively isolating the probe from the brain tissue (Szarowski et al. 2003).
A study using impedance spectroscopy (Williams 2001) showed that electrode
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impedance was well correlated with sheath density. This increase in tip impedance
following implantation is one of the reasons that microwire recordings have been
successful. The diameter of the wire’s exposed surface is 50 microns, which is
generally too large for good isolation of single units. As the sheath forms, the
amount of exposed surface is reduced, which raises the electrode impedance. These
higher impedance recordings are more in range with conventional extracellular
recordings and make it possible to isolate single action-potential waveforms. This
principle may apply to the Utah arrays, which have relatively large recording sites
at the shank tips. In contrast, this type of encapsulation is an apparent problem for
the Michigan probes, which, in the past, tended to record good action potentials
for the first one to three weeks after implantation, after which time the signal
degraded.

Some of the these issues are being addressed with new technology. Ideally, one
would like to regulate the extraelectrode environment so that sprouting neurites
are attracted to the vicinity of the recording surface before encapsulation takes
place (Kennedy et al. 2000). Presently, investigators are studying modifications to
the electrode surface using hydrogels, silk-like polymers, and nanotubes. These
structures can be bound to bioactive compounds, such as neurotrophins, that attract
growing neurites (Cui et al. 2001). Conversely, the inflammatory response can be
reduced. Lipid microtubes (Meilander et al. 2001, Zhong et al. 2001) can deliver
molecules to block transcription factors and downregulate genes controlling release
of proinflammatory cytokines (Manna & Aggarwal 1998). Systemic and local
dexamethasone administration was effective at reducing the density of the peri-
electrode sheath, whereas cyclosporin A was found ineffective (Shain et al. 2003).
Investigators made no attempt to correlate this with improved recording conditions.
Dexamethasone inhibits astrocyte hyperplasia and can also be incorporated into
coatings applied to the electrode. The diffusion of these molecules into the tissue
can be regulated so that a therapeutic dose is maintained over time. This technology
may achieve the desired electrode-neuron-glial sheath sandwich that could lead to
permanent long-term recording of neural activity.

Experience with these probes suggests that encapsulation is a major factor in
the deterioration of recording conditions. In the past, this deterioration may have
been due to the configuration of the probe, the planar recording sites on the side of
the shaft, and/or the size of the recording site (Hetke & Anderson 2002, Schmidt
et al. 1997). That the recording deterioration was due to encapsulation is supported
by the observation that the recording sites could be reactivated by passing current
through the electrode, which reduces the impedance by removing tissue or opening
tunnels through the encapsulation (Schmidt et al. 1993a,b). Better results have been
reported, recently. Investigators have maintained good recordings in the guinea
pig for more than one year (Kipke et al. 2003). In our laboratory we have been
recording good units for more than ten months from implanted probes in monkey
cortex. One consistent finding in comparing the success of chronic recordings in
rhesus monkeys, as compared to either guinea pigs or rats, is that it is easier to
obtain consistent high-yield recordings in the rodent. This finding may be related
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to differences in the reaction to implantation or to the differences in cortical folding
between the rodent (lissencephalic) and primate (gyrencephalic).

EXTRACTION ALGORITHMS

To generate a prosthetic movement signal, information contained in the paral-
lel recordings is transformed from the domain of spikes/sec to extrinsic (i.e.,
Cartesian) coordinates. Approaches for extracting information divide into two
broad categories: inferential methods and classifiers. Inferential methods are model
based—they depend on some understanding of underlying mechanisms. To illus-
trate this, we use a somewhat unrelated example from the vestibular system. The
response generated by receptors in the semicircular canals to angular acceleration
was predicted by modeling the endolymph, cupula, and canal as a torsional pendu-
lum. On the basis of this mechanical model, the canal input, angular acceleration,
is integrated to become angular velocity at the ouput. This model was confirmed
by recordings of axonal activity in the eighth nerve, which were correlated with
angular velocity. In contrast, classifier methods need not consider any mechanism.
Rather they rely on a consistent representation of the parameter to be extracted.
Imagine a set of three neurons recorded as a monkey moves to targets in eight
directions. Considering each neuron as a binary element (on or off), these three
neurons could encode each direction unambiguously. Each combination of the
neuronal pattern would be assigned to one target direction. Then, observation of
the neurons as a pattern obtained by simultaneously recording could be used to
predict movement direction. In this ideal example, no assumptions of mechanism,
or even of continuity between patterns, are necessary. However, if the task was
changed, for instance by adding or removing targets, there is no guarantee that the
eight-target code would still apply. In reality, neurons are not bistable but change
their firing rates continuously. Their firing rate–movement tuning functions are
unimodal, broad, and noisy, with no clear transition between on and off states.
Furthermore, in practice, to find a perfect set of neurons that encode a single pa-
rameter in an orthogonal manner (i.e., 3 neurons for direction in 3D space) is
difficult. These realistic conditions have led to more sophisticated classifiers than
the ideal example given here.

Inferential Methods

A population of neural activity measured as spike occurrences can be represented
as a vector. In this example, each dimension of the vector corresponds to a particular
neuron, and the value or magnitude of each dimension is proportional to that cell’s
firing rate. This vector then would have a direction and magnitude in a neural
space. The purpose of the extraction algorithm is to transform this vector into a
corresponding vector in movement space. The direction of each dimension of the
neural vector has no physical meaning other than acting as a neuron label. Models
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(for instance, based on directional tuning functions) are used to transform this
neural vector into a movement vector.

POPULATION VECTOR ALGORITHM As introduced earlier, the relation between
movement direction and firing rate in the motor cortex can be described with
the cosine function

D − bo = A · cos� 1.

This function is equivalent to the expression

D − bo = bxmx + bymy + bzmz 2.

or to the dot product of the two vectors B and M, where D is the discharge rate
of the studied unit, A is the amplitude of the tuning function, � is the angle
between the cell’s preferred direction, the movement direction B is a vector in the
unit’s preferred direction with a magnitude equal to the amplitude of the tuning
function, and M is a unit vector in the movement direction. The cell’s maximum
firing rate is the tuning function amplitude plus bo. The coefficients of the B
vector (the unit’s preferred direction) are typically found by regressing movement
direction to discharge rate. Most commonly, this relation comes from data gathered
during a task where the subject reaches from a center-start position to a set of
targets arranged circumferentially around the start position so that the reaches
occur uniformly in different directions.

The population vector is formed by combining weighted contributions from
each unit along its preferred direction. For a particular movement, the B vector of
each unit is normalized to the firing rate of the cell during that movement. This
contributory vector, Ci, of the ith unit, is added with those of the other N units in
the population to form the population vector.

The population vector can be generated in small bins (i.e., 20 ms) and correlates
very well with the hand’s velocity throughout an arm movement. These vectors can
be added together, tip to tail, to form a neural trajectory that predicts and matches
the arm’s trajectory (Georgopoulos et al. 1988). In the past, these experiments
were executed by recording units one at a time, summing their responses together
to form the population vector. For prosthetic control, the vector output must be
generated in real time by recording from electrode arrays using electronics capable
of processing many units simultaneously.

The population vector algorithm can be an efficient decoder if two ideal
conditions are met: The preferred directions of the recorded units should be
distributed uniformly in space with radially symmetric tuning functions
(Georgopoulos et al. 1988). Considering the small number of units recorded si-
multaneously with chronic electrodes, these conditions usually are not met. Often
units are not well tuned, and those that are do not form a symmetric distribution of
preferred directions. These problems are accentuated in prosthetic control, where
trials cannot be averaged and movement commands are calculated in small bins.
These issues were addressed in the modified population vector algorithm used by
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Taylor et al. (2002). Instead of weighting each unit’s contribution to the population
vector only by its discharge rate, a number of additional factors were used. As sub-
jects used their neural activity to direct a cursor to center-out targets, X, Y, and Z
weighting coefficients were calculated iteratively. This procedure was considered
coadaptive because the weighting coefficients were adjusted as the subject was
learning to make brain-controlled movements. By accounting for changes in the
tuning characteristics of the units as the subject learned, this algorithm was very
effective with relatively few units. Unlike the original population vector algorithm,
this algorithm reduced the contribution of poorly tuned units by scaling the coef-
ficients according to the unit’s cosine fit. One way that units commonly deviated
from the cosine function was that firing rates in the preferred direction were not
always 180◦ from the antipreferred direction. Using separate coefficients when
rates were above or below the mean compensated for this noncosine behavior.
Nonuniformity of the directional distribution was addressed directly by normal-
izing the X, Y, and Z contributions and was addressed indirectly by emphasizing
coefficients that produced good movements in all parts of the workspace.

Other extraction techniques are based on more formalized optimization algo-
rithms. The optimized linear estimator (Salinas & Abbott 1994) is similar to the
population vector algorithm in that individual cell responses are added vectorially
to give a single population vector. The difference is that each unit’s preferred di-
rection is calculated using a multiple regression across all the units simultaneously
to give optimal fits to the sampled movement directions. A correlation matrix be-
tween the firing rates of all cells is inverted to give the global least-squares fit of
the population. Compared to the population vector, this method has the advantage
of correcting for nonuniform direction distributions. Other investigators used a
similar linear approach with time-shifted firing rates regressed to hand position
(Wessberg et al. 2000).

KALMAN FILTER The methods described to this point are considered static models
because they consider the velocity at each time step to be independent. Dynamic
state models have been developed to account for correlations between nearby
velocities (or movement increments).

These methods have great potential because they use features of the movement
or behavior that are predictable in their own right, in addition to predictions based
on neural activity. Because many features of movement are regular (speed changes
smoothly, direction tends to be constant at high speed, etc.), these state conditions
can lend great power to the overall prediction. The prior hand velocities combined
with a history of firing rates are incorporated into the Kalman filter (Paninski et al.
2004) to predict future hand velocity. The state model for velocity is often very
simple, i.e., random walk. Used this way, velocities change smoothly—the velocity
of the hand does not change much from one instant to the next and is characteristic
of trajectories during reaching movements. Formally, xk is the velocity at time step
k, and xk+1 is the velocity at the next time step. The discharge rate at k is zk. The
state and observation equations are
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xk+1 = Axk + wk 4.

and

zk = Hxk + vk. 5.

Velocity can be expressed by a three-dimensional vector (X, Y, and Z); zk is a
vector of the current firing rates (at time step k) for the N simultaneously recorded
units. A is a matrix, for example, and is an identity matrix if the state model is a
random walk. H is a matrix of coefficients to convert the velocity into discharge
rates and consists of an X, Y and Z coefficient for each recorded unit (i.e., preferred
direction). The error in velocity between the estimated (first term in Equation 4)
and actual value is wk with a distribution specified with a covariance matrix �.
For the discharge rates, the error is vk with a covariance of �.

Of course, the state model can be more complex, for instance by taking into ac-
count the bell-shaped velocity profile and the tendency for straight arm movements
during reaching or by including terms for position and acceleration in addition to
velocity.

The Kalman filter works iteratively in steps. It begins by guessing the velocity
from an initial distribution specified by a mean x̂0 and covariance �0. This choice
is then used to get x̂−

k , the state estimate (Equation 6).

X̂k−1 is the estimate of velocity in the previous time step k − 1 and has a covariance
of �k−1.
The current velocity estimate at step k uses x̂k−1 and the velocity model, A:

x̂−
k = Ax̂k−1. 6.

The covariance of estimate errors in the state estimate of velocity is

P−
k = A�k−1AT + �. 7.

The prediction of velocity using x̂−
k and present discharge rates is

x̂k = x̂−
k + Kk(zk − Hx̂−

k ), 8.

where

Kk = P−
KHT(HP−

k HT + �)−1. 9.
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The state estimate is then updated with the spike activity to give the new estimate
of velocity, x̂k, using Equation 8. This measurement update uses the difference
between the actual, zk, and estimated, Hx̂−

k , discharge rates multiplied by the gain
factor, K, defined in Equation 9. The (.)−1 in this equation denotes pseudoinverse,
and ( )T signifies transpose. The current velocity estimate, x̂k, is then used as the
time update and becomes x̂k−1 in the next iteration.

Investigators have elaborated this general procedure using statistical methods.
The estimates of the Kalman filter can be considered the peak value of a probability
density function. For example, the density functions for each step of the recursion
steps can be defined in the following way: x̂k−1 is the mean of p(xk-1|zk−1, zk−2, . . .
z1), x̂−

k is the mean of p(xk|zk−1, zk−2, . . . z1), and x̂k is the mean of p(xk|zk1, zk−1,
. . . z1).

The generation of these density functions for nonlinear, non-Gaussian dynamic
state models is a current area of interest in statistical research (Brockwell et al.
2004).

Classifiers

The methods described above generate predictions based on prior knowledge of
how neural activity is related to movement and, in some cases, the general structure
of arm movements. Algorithms based on pattern recognition do not require such
prior knowledge. The self-organizing feature map (SOFM) is an example of a
classfier. These artificial networks depend on a consistent relation between neural
firing rates and movement. SOFMs can be visualized as a single layer of elements
or nodes (artificial neurons), each of which is connected to an input vector with a
set of connection weights. In one example of this scheme (Lin et al. 1997), each
of the n weights corresponded to a recorded unit’s discharge rate (n recorded units
in the sampled population). Initially, each of the network element’s n-dimensional
weight vectors was set randomly. In an initial step, the input vector consisting of
the recorded neurons’ firing rates was compared to each of the artificial element’s
weight vectors. The element with the weight vector closest to the input vector was
declared as the winner and modified to resemble the input vector. Its neighbors’
weights were also moved closer to the input vector. This process was repeated
for successive time points until clusters of similar elements were created on the
surface. These clusters had similar weight vectors and were distinct from other
clusters. In an identification step, each cluster was assigned to a direction. At this
point the network is considered trained. New input vectors were fed in, and the
predicted movement direction was chosen as the labeled direction of the cluster
closest to the input vector.

Other networks using back-propagation (Wessberg et al. 2000) and nonlinear
maximum-likelihood estimation (Pouget et al. 1998) have been used successfully
to convert populations of neural activity to predicted movement.

Another type of decoder was developed using snippets of arm trajectory and
time windows of recorded discharge rates (Isaacs et al. 2000). Each 200-ms window
contained 10 sequential discharge rates from a single neuron and corresponded to a
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trajectory snippet. Adjacent windows from the same neuron and windows between
different neurons recorded simultaneously were compared in a covariance matrix
and categorized with principal components. Used as a decoder, an eigenvector cal-
culated from the training data was multiplied by a novel window of discharge rates
to give a principal component. This component was compared with a dictionary
of principal components from the training set, and the closest match was declared
the winner. The corresponding trajectory snippet was then taken as the current
trajectory prediction.

Practical Considerations

Extraction algorithm development can be summarized with a few statements. First,
linear methods are very effective in extracting movement information from the
recorded population. Second, methods that account for asymmetrical samples can
effectively compensate for small sample size. Third, methods relying on training
sets must produce robust outputs. The training set should be generated from a
range of movements that represent the same range of movements for which the
prosthetic device will be used. This problem can be addressed with algorithms that
are adaptive, for example by changing weighting coefficients to maximize success
rates. Finally, algorithms that capture the features of natural movement such as
smoothness, segmentation, and curvature-speed tradeoffs are desirable because
these more natural movements may be inherently more controllable.

The issue of controllability is important. Prosthetic devices are closed-loop de-
vices. Subjects generate an output (i.e., neural signal) and then watch the device
move. Observation of the device’s performance closes the control loop, and sub-
jects have the opportunity to change their output to advance the device to the goal.
Learning, in the form of modified neural output, can dramatically improve pros-
thetic performance (Camena et al. 2003, Serruya et al. 2002, Taylor et al. 2002)
compared to open-loop decoding (in which the subject does not observe movement
of the device). The output of an extraction algorithm needs to be understood by the
subject, who should be able to alter neural activity in a consistent way to achieve a
predictable change in the way the prosthesis moves. This consideration is likely to
be more important than the details and performance of a given extraction algorithm
developed and evaluated with open-loop data.

OTHER BCIs

Recording individual action potentials requires an invasive surgical procedure to
place the electrodes. EEG, which uses scalp electrodes to record signs of electrical
brain activity noninvasively, is one type of BCI technology being implemented
presently in human subjects. Although many electrodes are placed around the
head, often only the electrodes over the sensorimotor cortex record signals useful
for brain control. EEG activity is the complex sum of many neuronal currents with
complex geometries filtered through the brain, skull, and scalp. Several methods
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are used to extract movement-related intentions from these signals, including fre-
quency decomposition, recognition of movement-related evoked potentials, and
slow cortical potentials. These methods allow subjects to control computer cur-
sors in one dimension in word-spelling and sentence-construction tasks and may be
useful in developing a communication interface. Although it is still an open ques-
tion whether this technology can generate signals for more complex movements,
a recent report showed that a well-trained subject could use the EEG approach
to perform a two-dimensional, center-out task (Wolpaw & McFarland 2003). A
detailed review of this subject has been written recently (Wolpaw et al. 2002).

More localized electrical activity can be recorded when electrodes are placed
between the dura and pia, as practiced in cortical mapping prior to epilepsy surgery.
Information derived from these signals holds the promise of controlling more
complex prosthetic movements (Leuthardt et al. 2003, Rohde et al. 2002).

This work implies that the more closely the recorded signal represents activity
of single units, the more useful it is for movement control.

PAST AND CURRENT CNP STATUS

In a lecture at Oxford in 1963 W. Gray Walter (1963), a pioneer in the use of
EEG and mobile automata, reported having used brain signals recorded from hu-
man motor cortex to operate a slide projector. This was the first example of CNP
feasibility. Much later, in 1996, investigators demonstrated continuous movement
control with initial, open-loop monkey experiments (Perepelkin & Schwartz 1996,
Schwartz et al. 1996), which showed that populations of units recorded simultane-
ously with microwires in both right and left hemispheres could be used to generate
population vectors for prosthetic arm control. In the ensuing four years, investiga-
tors continued most of this work in open-loop conditions, calculating population
vectors posthoc or using real-time population vectors to drive a robot arm without
feedback to the monkey (Isaacs et al. 2000, Wessberg et al. 2000).

More recently, a closed-loop CNP was first used in a rat to move a simple
lever for reward (Chapin et al. 1999). Since then, CNPs using small populations
of cell activity were shown effective for controlling closed-loop, two- (Serruya
et al. 2002) and three-dimensional (Taylor et al. 2002) movements. As described
in the previous section, subjects saw the result of the extraction process in real
time and learned to modify their neural activity to improve their performance
on the task (moving a computer cursor to specified targets). This, compared to
open-loop control, dramatically improved their overall ability to reach the target
quickly and accurately. In the Taylor et al. (2002) study, monkeys moved a cursor
in three-dimensional, virtual-reality targets, performing the task either by moving
their hands (hand control) or with their arms restrained (brain control). When
switching between these tasks, the preferred directions of the chronically recorded
units changed. Although there was no global pattern to these shifts, they were
consistent from day to day, and the size of the shifts increased over days as the
animals’ performance improved. The better linear fit of the activity patterns to the
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cosine-tuning function was also coincident with this improvement. A coadaptive
algorithm designed to track these learning-induced changes in neural activity was
very effective. One animal had a success rate of more than 80% in daily training
sessions (including periods of inattention) with a population of 64 units. This
animal, using brain control, performed consistently for many minutes, reached
novel targets on the first attempt, and moved with a speed and accuracy approaching
normal arm movements.

This closed-loop task was modified to include an electro-mechanical robot arm
in the control loop (Taylor et al. 2003). Instead of signaling cursor movement,
the extracted cortical velocity predictions were streamed to a robot controller.
Position of the robot arm was tracked three-dimensionally, and these movements
were fed back to the graphics routine so that the animal saw the movement of
the robot arm as cursor movement in the virtual reality display. Because the robot
arm did not move exactly as commanded, the cursor movement was perturbed.
However, the monkey learned to correct these perturbations using visual feedback
during the movement to achieve a high level of performance. Similar results were
found in a later study of two-dimensional movements combined with isometric
grip regulation (Camena et al. 2003).

Currently, work is underway to demonstrate brain control of reaching and grasp-
ing using direct vision of an anthropomorphic robot arm (Helms Tillery et al.
2003, Schwartz 2003). A child-sized motorized prosthetic arm with a 3-degrees-
of-freedom (DOF) shoulder and a 1-DOF elbow is mounted near the monkey’s
shoulder. The monkey will reach out to a piece of food at different locations in the
three-dimensional workspace and grasp it with a simple gripper before bringing
the food back to its mouth. For training purposes, portions of the task can be au-
tomated. For instance, the arm can be computer-guided to reach for and grasp the
food, followed by a brain-controlled retrieval by the monkey.

Recording technology continues to improve. Currently, the Michigan silicon
probes continue to record good unit activity following their implantation more
than six months ago in macaque cortex. The Utah probe has been modified with
new insulating materials and connector technology (Cyberkinetics Inc.), leading
to an increase in the number of units recorded per array. Finally, the microwire ap-
proach has been extended with new fabrication techniques (Nicolelis et al. 2003).
This field is now at the point where more reliable implants can be combined with
the control of elaborate prosthetic effectors capable of producing near-natural arm
movement.

FUTURE WORK AND PROSPECTS

On the basis of a number of studies, cortical neural prostheses will be feasible in
generating natural movements either with artificial effectors or intrinsic muscle
activation. The information contained in the recorded signal, consisting of indi-
vidual action potentials recorded simultaneously from the cerebral cortex, can be
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extracted in real time and be used to make purposeful movements. Several groups
are now preparing studies to apply this technology to humans.

The largest remaining obstacle to the successful implementation of cortical
neural prostheses is the chronic recording electrode. The electrode should be able
to record single-unit activity reliably for many years, be relatively easy to implant,
and be capable of recording many action potentials from different cells in a small
volume of cortex. Designs such as those produced by the University of Michigan,
where multiple recording sites are placed on each shank, have the advantage of
such dense sampling. On the other hand, the Utah probe can achieve high-density
sampling by spacing many shanks close together. These probes have an ideal
placement of the recording surface at the shank tip but do not have multiple sites
along each shaft. A potential compromise would be to arrange planar silicon probes
in a high-density array, a project that has produced several prototypes to date (Hetke
& Anderson 2002).

As described above, technology is being developed to regulate the tissue/
electrode interface associated with arrays implanted in the brain. Investigators
have demonstrated the potential of this technology in humans patients with the
cone electrode (Kennedy et al. 2000). This electrode is a capillary tube filled with
growth factor or peripheral nerve extract. Also in the tube are the exposed ends
of two microwires, which act as differential electrodes. Neurites that sprout in re-
sponse to the electrode penetration are attracted to the interior of the tube, through
which they grow and form synaptic connections to other neurons. The axon is per-
manently trapped next to the recording electrode. Although only a few channels of
multiunit data were recorded, this activity was used by locked-in ALS patients for
communicating with a spelling/letter-board program. One patient used this method
for more than a year.

An ethical issue arises as we work toward implementing these devices in dis-
abled patients. Paralyzed patients are motivated to volunteer as experimental sub-
jects. Surgeons and researchers are eager to implant chronic electrodes. The ques-
tion persists, at what point should this imperfect technology be applied? This
common issue in bioengineering has been addressed with other neural prostheses
(for example, cochlear implants, deep brain stimulators, and visual prostheses).
Presently, an informal survey (A. Schwartz, personal communication) of the lab-
oratories using CNP suggests that, on average, a chronic electrode implanted in
monkey cortex has only a 40% to 60% chance of recording unit activity. Al-
though each lab has an example of an all-star animal with good recordings for
multiple years, electrode recordings usually deteriorate after several months. How
much improvement in this technology is needed before human experimentation
is warranted? Considering the rapid improvements in electrode technology, a bet-
ter understanding of the biology associated with electrode interaction within the
brain, the financial race of investment-driven development, and the desires of pa-
tients and researchers to try this technology, humans likely will be implanted with
these chronic devices in the next few years. The technology used in these de-
vices, the care taken to develop the correct surgical procedures, and the peripheral
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technologies associated with the electrodes—connectors, telemetry, spike condi-
tioning, and real-time computing—should be well considered, not only by regu-
latory bodies but also by the scientists, engineers, and patients who will be using
them. The marketing aspect of this technology is rarely considered. There is a
trade-off between the severity of a patient’s deficit and the relative efficacy of a
CNP. Locked-in patients will benefit from any device that allows them to com-
municate better, whereas patients with C5 spinal cord lesions may still have arm
mobility and would only benefit from a device that restored natural arm movements
combined with a degree of grasping. How many patients within these categories
would be willing to undergo surgical implantation before this technology is com-
mercially viable? This answer depends, to a large degree, on the viability of the
electrodes, the information content of the recorded signals, and the engineering
needed to make natural, agile effectors. Furthermore, it will be important to de-
velop effective training procedures for patients to acquire the skills to use these
devices. Certainly, companies have already been formed with the expectation that
these conditions will be met. In the mean time, those of us working in the laboratory
have the exciting prospect of direct access to the previously inaccessible neuronal
substrate of human skill, with the potential generation of scientific discovery of
fundamental aspects of learning and cognition.
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