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Abstract

This study examines the neuronal activities of motor cortical cells associated with the production
of arm trajectories during drawing movement. Rhesus monkeys were trained to perform different
tasks. The electrical signs of discharge of motor cortical cells were recorded while monkeys
made movements. We consider a computational model that exacts arm movement trajectories
based on recorded neuronal discharge rates. A Self-Organizing Feature Map (SOFM) is used to
select the optimal set of weights in the model to determine the contribution of individual neurons
to an overall movement representation. The correspondence between movement directions and
discharge patterns of the motor cortical neurons is established in the output map. The topology
preserving property of the SOFM is used to analyze real recorded data of a behaving monkey
performing reaching and drawing movements. In this chapter, we demonstrate the applicability of
the SOFM model in analysis of discharge patterns recorded serially by single electrodes. The
same principle is then employed in predicting movement trajectories based on 32 channel
simultaneous recordings. The procedure of obtaining the 32 or 64 channel chronic recording from
each of the hemispheres of rhesus monkeys through microwire electrode arrays is also
introduced. :
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I. Introduction

Understanding the neural control of movement is one of the outstanding challenges in
neuroscience. Seemingly mundane movements such as lifting your arm to scratch the tip of your
nose with a finger represents a complex control problem that involves sensorimotor integration,
multiple neural pathways, and coactivation of large and small muscles. While this complex
problem remains largely unsolved, some important insights can be gained through considering
how neural control signals are represented in the responses of neurons in the motor cortex. This
chapter focuses on motor cortical signals related to well-defined, two- or three-dimensional arm
movements.

Over the last decade or so, several investigators have shown conclusively that motor cortical
activity applied to the population vector algorithm (PVA) can be used to generate accurate arm
trajectories in point-to-point and drawing movements in both two- and three-dimensional space.
The PVA is based on the initial finding by Georgopoulus and colleagues [1] that the direction of
the hand during multi-joint arm movements is represented by a simple monotonic relation with
the discharge rate of motor cortical cells. This “tuning” function is broad and spans all
movement directions, suggesting that many cells represent a given direction simultaneously. The
primary descriptor of this function is the movement direction in which a cell fires at its maximal
rate—the “preferred” direction. The nature of the tuning suggests that a population of motor
cortical cells is capable of encoding uniquely and accurately the movement direction of the hand.
This hypothesis has been proven for two- and three-dimensional movements [6, 9, 35]. For each
cell, a unit vector in that cell’s preferred direction is multiplied by its average discharge rate
during the movement. This weighting is done on all the vectors pointing in the preferred
directions of the different cells to be included in the population. The weighted vectors are
summed and the resulting “population vector” points accurately in the preferred directions. The
data for these vectors are generated by recording different cells in individual experiments as
animals identically performed the same task repeatedly.

Initially, this algorithm was applied to point-to-point movements and the discharge rate was
averaged over the entire movement, a valid simplification since the directions were straight.
Recently, there has been a large body of work [36, 27, 31] showing that the trajectory of the hand
as it moves during a behavioral task follows rules suggesting that the hand path is the overriding
feature of movement controlled by the CNS. We showed originally that a time series of
population vectors added tip-to-tail accurately represents 3D point-to-point movements [6].
Schwartz developed a set of drawing tasks and modified the PVA to determine how motor
cortical activity is related in an ongoing fashion to the evolution of a movement as it takes place
[37, 7). These findings show that the trajectory of the hand is well represented in the cortical
activity and that the shape of the drawn figure is represented in this activity. Furthermore,
several of the behavioral invariants characteristic of adult human movements, such as the 2/3
power law [20] and segmentation [30], are also incorporated in this neural signal as well.

These results combine to suggest that relatively simple neural representations in relatively small

populations of motor cortical cells can predict realistic arm trajectories during complex reaching
and drawing tasks. One of the objectives of our research is to extend this basic finding to
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develop a technique to monitor cerebral cortical activity and use it as a control signal for a
prosthetic arm. This method would ultimately serve as a long-term amelioration for individuals
that are missing or unable to control their arms. Our aim is to refine this control signal so that as
funcationally impaired individuals could-effortlessly use these prosthetic devices in the same way
as functionally intact individuals with near-natural performance.

Neural control of an artificial arm first requires a real-time neural interface to provide
simultaneously recorded neural populations, rather than the sequentially recorded populations
that have been used in previous studies. With this in mind, we have developed a method of
surgically implanting microelectrode arrays in motor cortex to provide chronic recordings of
spike-discharge activity from many cortical locations. Second, the desired control information
must be extracted from the multichannel cortical recordings. This process must be performed as
fast as possible using a minimum amount of information (i.e., from as few cells as possible), and
therefore requires the development of intelligent signal processing algorithms. While the PVA
approach provides an effective starting point, we are also working to develop analytical
techniques to enhance and expand the usefulness of the PVA. One of these is to use an artificial
neural network, or more specifically, a self-organizing feature map (SOFM), to efficiently extract
the trajectory signal, demonstrated by the PVA, from cortical activity. The self-organizing map
of modeled neural activity is based on actual neuronal discharge rates. Self-organizing feature
mapping can be used to select the optimal set of weights in the model to determine the
contribution of individual elements to the overall movement. The correspondence between the
movement directions and the discharge patterns of the motor cortical neurons is then established
in the output map.

The remainder of this chapter describes our investigations into motor cortical information
processing using simultaneously-recorded neural populations and self-organizing feature maps.
Section II briefly describes the experimental procedures for obtaining the neural populations.
Section III provides a brief review of some computation models for trajectory prediction from
discharge rates, with an emphasis on a self-organizing feature map model. Sections IV and V
present two case studies to demonstrate the utility of this model for predicting arm trajectories in
two- and three-dimensional arm movements. Finally, Section VI provides some closing
remarks.

II. Experimental Procedures

The experimental aspect of our investigations involves obtaining a coarse sample of motor
cortical spike-discharge activity as the trained animal performs a 2D or 3D reaching task (Figure
1). A microelectrode array—typically consisting of 16 or 32 microwires—is permanently
implanted in motor cortex in order to record isolated single-unit activity at multiple cortical
locations. Unit activity is typically observed on 30-75% of the electrodes and it is possible to
isolate more than one unit on a single active electrode. The cortical responses are obtained using
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Figure 1. Schematic of an experimental set up to perform real time multichannel neural recording and real

time discharge pattern analysis for determining a ‘predicted’ arm movement trajectory



a special-purpose multichannel neural recording system that provides real-time spike waveform
discrimination and streaming of the separate spiketrains to hard disk. Presently, all spiketrain
analysis is performed offline. Recordings are obtained daily while the awake animal performs a
3D reaching task.

Figure 2 illustrates sets of spike waveforms that were recorded in the same animal on two
different days using a 32-channel electrode. In this case, four channels exhibited spike activity
on the earlier day (channels 7, 15, 16, and 29 in left panel), while the same and additional
channels were active on a later day (right panel). Figure 3 provides a more detailed view of one
of these channels on two different days to illustrate both a well-isolated single unit and multiunit
cluster recorded on the same electrode. Unit waveforms on any particular electrode exhibit
varying degrees of stability from day to day, with the large unit in Figure 3 being an example of a
relatively stable unit. 3
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Figure 2. Spike waveforms recorded with a 32 channel electrode on two different days. Each small
window represents the spike waveforms recorded from one of the electrodes (voltage vs. time). The
length of each window is 0.8 ms.



Figure 3. Spike waveforms from one channel recorded on two different days. The top figures are .
spike waveforms (voltage vs. time) obtained using a simple negative threshold. These raw waveforms
are further discriminated in real-time on the basis of waveform features. The bottom figures are
projections of the first two principal components the waveforms. The discrete clusters away from the
origin represent different waveforms.

The arm reaching task was carried out by monkeys well-trained in the task. A 3D center — out
task was prescribed whereby the monkey was trained to move its forelimbs in one of eight
different movement directions. Five acrylic posts with lighted marker buttons at the ends were
mounted to a disk which was free to rotate +/- 90 degrees from a neutral position. Two posts
were long, two posts were short, and one central post had a length midway between the other
two. When the disk was stopped in the +90 degree position, the marker buttons were positioned
at four of the corners of a five inch cube circumscribed about the central marker. When rotated to
the -90 degree position (180 degrees from the +90 degree position), the four outer markers were
positioned at the other four corners of the five inch cube (Figure 4).
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Figure 4. Pushbutton switches with lights are mounted at the ends of five plexiglass cylinders. Four
switches are located a the vertices of a cube five inches on a sidc, and one switch is located on the
central rod.

In the 3D center— out task, the disk was first rotated to the proper position remotely, and the
central button was lit. When the monkey placed its finger on the central marker, the central
button turned off and one of the “corner” buttons were lit. The monkey’s task was to release its
hand from the central marker and move it to press the button that was lit within a time-out
interval. Five trials in random order were recorded for each of the eight movement directions.
Recordings of the movement times and the cortical cell activity from both hemispheres were
recorded simultaneously.

III. Computing Arm Trajectory from Neural Discharge Rates

The trajectory of the arm is an important element in the control of volitional reaching and
pointing and is thought to be controlled continuously during the movement. The arm trajectory
may be decomposed temporally into a series of vectors. Each vector is specified by a direction
and a magnitude; these components define tangential velocity. If the vectors are defined at
constant temporal intervals, the magnitude of each vector is speed. Although it is useful to study
speed and direction separately, in certain movements such as drawing they may not be
independent. As the spatial rate of directional change (curvature) increases, the angular velocity
decreases [33,34]. As will be shown in the following, both movement direction and movement
speed are represented in the output map of the SOFM, once the network is trained, as it is
continuously represented in the activity of motor cortical neurons during the tracing movement.
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3.1. Population Vector Analysis

The population vector method was developed by Georgopoulos and his collaborators to
investigate the relations between the neuronal activity in the motor cortex of the monkey and the
direction of arm movements in two- and three-dimensional spaces [1-9].

In the study of reaching movement in a two-dimensional space, monkeys were trained to make
point-to-point movements from a center start position to one of eight targets spaced equally
around a circle. Neurons recorded during this task were found to have mean discharge rates that
were highest in a single ‘preferred’ direction and tapered off gradually in directions farther away
from the preferred direction, firing at their lowest rates for the movement directions 180° from
the preferred direction. The relation between movement directions and discharge rates for
individual neurons could be fit with a cosine tuning function:

D=b, +kcos(6—6,)
where by is a regression coefficient corresponding to the mean activity in the task, kis a
regression coefficient corresponding to the depth of the modulation across different movement
directions, 8 is the direction of the movement, 6y is the preferred direction and D is the discharge
rate. -

The tuning function of individual motor cortical neurons spans the entire directional domain.
Each directional neuron encodes all directions of the movement. Conversely, all neurons in the
cortical population simultaneously encode a single movement. If C; is the unit preferred
direction vector for the i-th neuron, then the neuronal population vector P(#) is determined as the
weighted sum of these vectors:

P()=2,r,(0C,

where the weight ri(z) is the activity (discharge rate minus the geometric mean) of the i-th neuron
at time bin ¢. The discharge rate can be measured during monkey's arm movements, resulting ina
series of weighted vectors {or each neuron. When these vectors are summed across the
population for each bin, the resulting series of population vectors P(1), represent well the
direction of the movement as it changes in time during the task. Moreover, the magnitudes of
these population vectors suggest instantaneous displacement (speed) throughout the task. Thus,
connecting these population vectors tip-to-tail together, one may obtain a predicted neural
trajectory. It was shown that real trajectories of arm movement could be predicted by neural
trajects ries.

To use the population vector approach described above, one needs to know the preferred
direction of every neuron in the selected cortical population. Usually this is done by experiments.
Any bias resulting in a non-uniform distribution of preferred directions could result in prediction
error in the trajectory.

There have been some other methods used for population decoding. For example, the simulated
annealing algorithm has been used to adjust the connection strengths of a feedback neural
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network so that it would generate a given trajectory by a sequence of population vectors [22].
However, as in the population vector algorithm, the preferred direction is required in this
algorithm.

3.2. The Optimal Linear Estimator (OLE) Method

The OLE is a statistical method for population decoding [23]. The estimation formula of OLE is
as follows: :

V., =2 r®D,
i

where V. is the estimate of the movement direction, r; is the measured firing rate (or normalized
firing rate) of neuron i. Note that D; is different from the preferred direction. Specifically,

D, = Z Q"L
j

with
L, =[Vf,(vV)av
and Q is the correlation matrix of firing rates determined as

Q; = [ rir,P(r1V)drdv

where V denotes the actual movement direction, P(r|V) denotes the probability of obtaining the
firing response r given that the movement direction takes the value V, and f;(V) is the average

discharge rate of cell { when the movement direction takes the value V. Equivalently,

V)= [ rP(rAV)dr.

It is shown that the cosine tuning curve is the optimal case for linear decoding methods and the
OLE method can produce the smallest average error of any linear method [23]. However the
OLE method may encounter difficulty when the number of cells used is large and when Q is ill-
conditioned. When the unit spiketrains are noisy (missing spikes, false-positive spikes), the
recorded discharge rates may not be perfect cosine tuning curves and the assumption made for
guaranteeing the performance of OLE is no longer true.

3.3. The Self-Organizing Feature Map (SOFM) Model

The SOFM has been applied successfully to speech processing [11], robotics [19], vector
quantization [17, 21] and biological modeling [18]. The SOFM learns a mapping from the input
data space R" onto a two-dimensional array of nodes by means of self-organization which is
driven by examples Xe R" (Figure 5). In SOFM, every output node p is associated with a
synaptic weight vector W, =[ wp;, wpa,...,Wp3 ]T € R". The learning rule or the weight adaptation
for SOFM in the discrete form is given by [12-15]:
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Figure 5. Self-Organizing Feature Map

w,(t+ D) =w, () +a()[X ()~ w,(1)], Vpe N_(1)
w,(t+1D) =w, (1), Vp & N (1)

where £=0,1,2,... is the discrete time coordinate, oft) is the learning rate factor, and N,(t) defines a
set of neighborhood nodes of the winner node c. The winner node ¢ is defined to be the node
whose weight vector has the smallest Euclidean distance from the input X(1):

v~ X <|w, () - X(2) Vp.
We have used a 20 by'20 two-dimensional lattice as the output layer and (f) = 0.95(1 — %\/)

with N=200000 in obtaining our results in sections 4 and 5 [16]. We started with the initial
radius of N() that equals the diameter of the output layer and let it shrink with time.

In our applications, the SOFM acts as a decoder. By findin g the winners, SOFM maps the input
onto a node in the output layer. Every node in the output layer decodes an association

with inputs. The critical feature of this algorithm is the topology preserving. We call a map
topology preserving if: a) similar input vectors are mapped onto identical or neighboring output
nodes; b) neighboring nodes have similar weight vectors. Property (a) ensures that small changes
in the input vector causes correspondingly small changes in the location of the output winner.
This makes SOFM robust against distortions of inputs. Property (b) ensures robustness of the
inverse mapping which is critical for the accuracy of SOFM as a decoder. The SOFM model
approach extracts directional patterns that are encoded in the discharge rates with the following
advantages: 1) without using the preferred directions; 2) robust against noise; 3) easy to
implement in hardware. The population vector method suggests that there is a close association
between the discharge rates of cells in motor cortex and the direction of arm movement.
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IV. A Preliminary Case Study Using SOFM for Single Channel Recordings

We consider a self-organizing model of the neuronal discharge patterns based on neuronal
discharge rates. The inputs to the model are averaged discharge rates from a group of cells in the
monkey's motor cortex. These discharge rates were taken while the animal was performing a
behavioral task. The output map of the model is either a two-dimensional plane or a three-
dimensional cube. The map codes not only the predicted direction of arm movement, but also
other non-specific movement associated parameters such as speed and position. The nodes in the
output map are interconnected by a neighborhood function during training. SOFM was used to
adapt the weights of the network to generate a mapping between discharge rates of motor
cortical neurons and directions of arm movement.

The main advantage of this approach is that preferred directions are not prerequisites for
obtaining predicted directions. Consequently the possibility of error accumulation from non-
uniformities in preferred directions is reduced. Moreover, the topology preserving property of the
SOFM enables us to calibrate the output map with the topology relation within input discharge
rates, which is useful when interpreting the computation results.

In this study we focus on the statistical discrimination of behavioral modes while the monkey
performs behavioral tasks as described in the corresponding sections. Our computer simulations
from a former spiral task reveal that the behavioral modes are clearly differentiated and the map
simultaneously provides a clear topological relationship among these modes. The movement
directions during the spiral tracing task is well predicted by the discharge rate patterns using the
self-organizing model (refer to section 4). The population vector method has already been used
to show that directions and speed are well represented in the activity of these cells {7]. This
method assumes the linear functional relationship between discharge rates and movement
directions as shown in the equation to obtain P(t). It may not capture all the consistent
relationships between cell activity and different parameters that could be represented in this
activity. In contrast, the statistical nature of the SOFM technique will capture these relationships
without a priori assumptions about what is represented or the form of the code.

A rhesus monkey was trained to trace with its index finger on a touch-sensitive computer
monitor. In the spiral tracing task, the monkey was trained to make a natural, smooth drawing
movement within approximately a 1-cm band around the presented figure. As the figure
appeared, the target circle of about 1-cm radius moved a small increment along the spiral figure,
and the monkey moved its finger along the screen surface to the target. The spirals we studied are
outside—in spirals.

Due to limitations in single electrode recording, the firing activities of the recorded n cells could
not be taken simultaneously. Consequently the average discharge rate vector X; could not be
calculated simultaneously at time ¢;. However, special care was given to ensure that the monkey
repeated the same experiment n times to obtain the firing signal for all the n cells under almost
the same experimental condition. We thus assume that the experiments of recording every single
cell's spike signal were identically independent events so that we could use spike signals of the n
cells as if they were recorded simultaneously.
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While the well-trained monkey was performing the previously learned routine, the occurrence of
each spike signal in an isolated cell in the motor cortex was recorded. The result of these
recordings is a spike train at the following typical time instances, 7, 7,,-*,7 .. The average

discharge rate is calculated from the raw spike train for every time interval (selected as 20 msec
in our simulations).

Let Q be the collection of the monkey's motor cortex cells whose activities contribute to the
monkey's arm movement. Realistically we can only record a set of sample cells
S=(S, €Q,i=12,---,n}, to analyze the relation between discharge rate patterns and the

monkey's arm movements. We assume that the cells included in the set S constitute a good
representation of the entire population. Our following results are obtained from 81 cells in the
motor cortex. Each complete trial of movement in the tasks take about 200 msec. Discharge rate
vectors are the inputs to the SOFM and the outputs from the SOFM are predicted moving
directions corresponding to the discharge rate pattern.

4.1. SOFM for Neuron Discharge Rate Pattern Analysis

The objectivehére is to investigate the relationship between monkey's arm movements and
firing patterns in the motor cortex . The topology preserving property of the SOFM is used to
analyze real recorded data of a behaving monkey [16].

To train the network, we select n cells (in this case study, n=81) in the motor cortex. The
average discharge rates of these n cells constitute a discharge rate vector X; =[d,;,d,;, ", d; 17,

where dj;, i=1,...,n, is the average discharge rate of the i-th cell at time bin #;. A set of vectors
{X,lk=12,---, NP} recorded from experiments are the training patterns of the network, where

NP is the number of training vectors. In this case study, a 20 by 20 two-dimensional ]attice was
used as the output layer of the SOFM.

During training, a vector X € {X, 1k =1,2,---, NP} is selected from the data set at random. The

discharge rate vectors are not labeled or segmented in any way in the training phase: all the
features present in the original discharge rate patterns will contribute to the self-organization of
the map. Once the training is done, as described previously, the network has learned the
classification and topology relations in the input data space. Such a ‘learned’ network is then
calibrated using the discharge rate vectors of which classifications are known. For instance, if a
node / in the output layer wins most for discharge rate patterns from a certain movement
direction, then the node will be labeled with this direction. In this part of the simulation, we used
numbers 1~16 to label the nodes in the output layer of the network, representing the sixteen
quantized directions equally distributed around a circle. For instance, a node with label ‘4’ codes
the movement direction of 90 degrees from the horizontal position. If a node in the output layer
of the network never wins in the training phase, we label the node with number ‘-1°. In the
testing phase, a ‘-1’ node can become a “winner” just as those marked with positive numbers.
Then the movement direction is read out from its nearest node with a positive direction number.
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Figuic 6 gives the learning results using discharge rates recorded from the 81 cells in the motor
cortex in one trial of the spiral task. From the output map, we can clearly identify. three circle-
shaped patterns representing the spiral trajectory. These results show that the monkey's arm
movement directions are clearly encoded in firing patterns of the motor cortex. A clear pattern
can be distinguished from the Jocations of the nodes in the map. Note that nodes with the same
- numbers (i.e., directions) on different spiral cycles are adjacent. This is the same for the actual
trajectory and can be considered preservation of topology, which is an attribute of the SOFM.
Different cycles of the spiral are located in correspondingly different locations of the feature
map, suggesting that parameters in addition to directions influence cortical discharge rates.

Figure 6. The SOFM output for the discharge rates of the 81 neurons in the motor cortex in the
spiral task. The size of the output map is 20 by 20. The nodes marked with positive numbers are
cluster ‘centers’ representing the directions as labeled, while the nodes labeled with *-1' are the
‘neighbors’ of the ‘centers’. The closer it is to the ‘center’, the more possible it represents the
coded direction of the ‘center’.

What follows are some analytical results using data recorded from five trials in spiral tracing
tasks and center—out tasks.

4.2. Analytical results

Analytical study 1. In this analysis, we used data recorded during five trials of spiral tracing
tasks. The first trial was used for testing and the rest were used for training. After the training and
labeling procedure, every node in the output map of the SOFM was associated with one specific
direction. The direction of a winner was called “neural direction” when discharge rate vectors
were presented as the input of the network bin by bin in the testing phase. Figure 7 gives “neural
directions” against corresponding monkey’s finger movement directions.
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Figure 7. The “neural directions” and the finger directions in 100 bin series in the inward spiral tracing task.

After post-filtering the predicted “neural directions” with a moving average filter with a width of
three bins, we combined the neural directions tip-to-tail bin by bin. The resulting trace (“neural
trajectory”) is similar to the finé¥ trajectory. Note that the “neural directions” are unit vectors. To
use vectors as a basis for trajecfbry construction, the vector magnitude must correspond to
movement speed. However, in applying the SOFM in the present analysis, we did not calibrate
the speed information, or the speed is approximately considered unity. Figure 8 demonstrates the
complete continuous monkey’s finger movement and the predicted neural trajectory.

Analytical study 2. In addition to the spiral data used above, the data recorded in the 2D
center— out tasks were added to the training data set. Figure 9 shows that the overall
performance of the SOFM has been improved. This result suggests that the coding of arm
movement direction is consistent across the two different tasks.

Analytical study 3 (leave-k-out method). This analysis used a total of five different sets of
experiments for training and testing the SOFM. Each data set consisted of five trials in each of
the spiral and center — out tasks. In each simulation, one of the trials in the spiral task was
selected for testing and the rest were used for training. Note that the training and testing data
were disjoint in each set of experiment. The neural trajectories from the five tests were averaged
and Figure 10 shows the averaged result. Due to the nonlinear nature of the SOFM network, a
different training data set may result in a different outcome in the map. Therefore, the leave-k-out
method provides us with a realistic view on the overall performance of the SOFM. Figure 11
shows the bin-by-bin difference between the neural directions and the finger directions in 100
bins. The dashed line in the figure represents the average error in 100 bins.
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Figure 8. Using data from spiral task for training. Left: the monkey's finger movement
trajectory calculated with constant speed; right: the SOFM predicted “neural trajectory”.

Figure 9. Neural trajectory: using data from spiral and center — out tasks for training.

Note from Figure 6 that when the monkey's finger was moving along the same direction on
different cycles of the spiral, one observes distinct cycles on the output map of the SOFM as
well. By the topology preserving property of the SOFM, this suggests that the output nodes
decode not only directions but also probably speed, curvature and position, etc. Although the
population vector method has previously shown this information to be present in motor cortex
[7], the SOFM model is able to capture regularities about speed and curvature without assuming
any linear functional relationship to discharge rates as the population vector and the OLE
methods do.
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Figure 10. Neural trajectory: average testing result using leave-k-out method.

Figure 11. The binwise difference between the finger directions and the neural directions in 100
bins. The dashed line is the average error in 100 bins. The neural trajectory is the average testing result
of the SOFM using the leave-k-out method.

For those drawing movements with significant changes in speed, we may be able to quantize the
speed as we did with directions. As we have discussed previously, the direction and the curvature
or speed may be encoded in discharge rates as a feature unit, allowing the nodes in the output
map to be labeled using directions and speed together. Consequently, the same process of
direction recognition by using the SOFM could be applied to speed recognition based on’
discharge rates of the motor cortex.

Other types of networks, e.g., the sigmoid feedforward and radial basis function networks could
have been used to associate discharge rates with movement directions. However, as discussed
above, the SOFM offers a unique combination of both data association (which some other
networks can achieve) and topology information as represented by the two-dimensional output
map (which is hard or impossible for other networks to implement).
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V. Analysis of Simultaneously Recorded Neural Populations Using SOFM |

The previous results were obtained based on single-neuron recordings of 2D spiral and
center—out tasks. In the present section we provide some statistical analysis on simultaneous
recordings from motor cortex.

5.1. Spike Rasters and Preferred Directions for 3D Reaching Tasks

Simultaneously recorded units in motor cortex exhibit directional tuning as expected. Figures 12
through 14 are spike raster plots to demonstrate the forms of the raw spike activities. In Figure
12, eight separate figures are displayed to show the spike activity as the monkey moved its hand
to each of the eight individual targets located at the corners of a cube circumscribed around the
central starting position (see Figure 4 for the experimental arrangement). The four central plots
represent the four targets on the back side of the cube. Target numbers are located on the upper
right-hand corners of each plot. For instance, target #1 is the lower right-hand target on the front
face of the cube and is displayed on the lower right corner of the eight-figure raster plot.
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Figure 12. Raster plot of a single-cell's spike activity recorded from the motor cortical area
during the 3D reaching task
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Five trials were recorded for each target location in random order. The trial numbers are listed on
each line as numbers | to 40. Each dot on a plot represents a spike that was detected during the
movement. Vertical hash marks show events during each trial: First mark - light on target button
appears; second mark (the vertical center line about which all trials are synchronized) - monkey
released center button and initiated move toward target; third mark - hand arrives at and presses
target button. Therefore, the distance between hash marks before the vertical center line is the
reaction time, and the distance between marks after vertical center line is the movement time.

The bands above each target’s plot shows the spike activity traces redisplayed in a compressed
format. These bands clearly show darkly when the frequency of the unit spike activity is high and
sparsely when the unit spike activity is low. The maximal activity interval is different for each of
the eight targets, which suggests that there is a preferred direction for this cell. The cell activity
patterns would be fairly uniform during movements to all eight targets if direction was unrelated
to the cell firing rate. We thus would say that this cell is directionally tuned.

Four cells recorded from the motor cortical area of the left and right hemispheres are represented
in Figures 13 and 14, respectively. Each speckled horizontal band represents the activity of one
cell during five trial movements. The eight boxes contain the firing patterns observed during
hand movements to each of eight targets during the 3D reaching task. The layout of these boxes
has the same legend as Figure 12. Therefore the top horizontal band in each of the eight plots
contains the activity of cell #1, whereas the bottom bands contain the activity of cell #4. Each dot
represents a single spike in the record.

Figures 13 and 14 differ from Figure 12 in that two sets of raster plots are provided for each
target location. The leftmost series of four bands in each of the eight plots shows the spike
activity of the cells when the left arm of the monkey was utilized; the rightmost series of four
bands in each plot shows the activity when the monkey used its right arm. The interesting
observation from Figures 13a, 13b and Figures 14a, 14b is that the spike activity suggests that the
10 cells recorded and shown in Figures 13 and 14, respectively, are directionally tuned during
motions of both the right and left arms.

In a sample neural population of 25 units, the units tended to be directionally tuned and the
resulting set of preferred directions provided a coarse sample of the 3D work space (Figure 15).

5.2. Statistical analysis of neuronal activity patterns in 3D reaching using SOFM

The SOFM is effective for estimating arm trajectories from simultaneously recorded neural
populations of motor cortical cells. In the 3D reaching tasks, five trials were recorded during
movements to each of the eight target locations to yield experimental data sets consisting of 40
successful trials. In all the following results, we have used a 20 by 20 output map for the SOFM
network. The inputs to the SOFM range from 12 to 23 simultaneously recorded units. Discharge
rates—the inputs to the SOFM network—were computed from the number of spikes from the
time the target button was lit to the time the target button was pressed.
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Figure 13a. Raster plot of spike activities of four cells from the left hemisphere during 3D reaching
motions of the left and right arms.
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Figure 13b. Continuation of Figure 13a with additional six cells.
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Figure 14a. Raster plot of spike activities of four cells from the right hemisphere during 3D reaching
motions of the left and right arms.
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Figure 14b. Continuation of Figure 14a with additional six cells. .
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Figure 15. Two different views of the set of preferred directions for a simultaneously recorded

neural population recorded in motor cortex. The preferred directions are plotted in the 3D workspace
with the center of the cube corresponding to the center target. The hatched face of the cube
corresponds to the back plane of the workspace.

Analytical study 1 (one experiment for training, one experiment for testing). These simulations

use one experimental data set for training the SOFM and a second independent experimental data

set for testing. Individual as well as averaged testing results as included in Table 1.

where in Table 1, “exact-on-target” is the number of testing trials which are correctly predicted

by the trained SOFM; “ISl—neighbor—target” records the number of testing trials which are one

direct neighbor distance away from the real reaching direction; “Z”d-neighbor—target” are those
w0

which are identified as the diagonal element of the real reaching direction; the “input #
represents the number of active units or the number of inputs to the SOFM network.

Analytical study 2 (three experiments for training, one experiment for testing). These
simulations used three experimental data sets for training the SOFM and a fourth independent
experimental data set for testing. Individual as well as averaged testing results as included in
Table 2. In these simulations, 62% of the testing trials are correctly predicted by the SOFM, over
90% of the testing trials have been correctly predicted within the distance of 1st neighbor. The
results obtained here are consistent with the ones obtained in Section IV which involved only
single channel recordings.

These two simulations were conducted without any pre- or post-processing of the neural data. As
can been seen from Tables | and 2, when more training data are available for the network, the
prediction accuracy of the SOFM significantly improves (62% vs. 42% for exact-on-target hits).
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for the reaching movements. The SOFM may be used as an very efficient tool to provide a
correlation between the movement direction and the neuronal activity patterns.

- Table 1. Testing result summary using one experiment for training after
the SOFM trained by one differcnt reaching experiment.

Exact on | 1st neighbor|2nd neighbor| Total #
Training/testing file names | target target target target input #
50202¢00 / b0202e01 21 7 11 39 14
b0117r01 / b0117r02 16 18 5 39 12
b0117r03 / b0117r04 28 9 2 39 12
b0129e02 / b0129¢00 18 10 6 34 16
b0205e00 / b0205e01 8 17 14 39 15
b0130e00 / b0130e01 15 8 3 26 18
b0119r03 / b0119100 4 9 16 29 23
b0118r02 / b0118r01 0 16 23 39 17 -
b0131e01 /b0131e00 17 10 3 30 19
b0201e00 / b0201e01 24 9 . 6 39 15
Total 151 113 89 353
Accumulative percentage 43% 32% 25%
Table 2. Testing results summary using 3 experiments for training
and an independent reaching experiment for testing
Exact on |1st neighbor|2nd neighbor| Total #
Training/testing file names| traget target target of trials | input #
b0118r00+01+02 / 03 8 2 2 12 17
b0129e00+01+02 / 03 12 10 2 24 16
b0118r01+02+03 / 00 27 7 5 39 17
b0118r00+02+03 / 01 26 10 3 39 17
b0118r00+01+03 / 02 27 12 0 39 17
b0129e01+02+03 / 00 20 12 2 34 16
b0129e00+02+03 / 01 11 11 2 24 16
Total 131 64 16 211
Accumulative percentage 62% 30% 8%
V1. Concluding Remarks

Our results based on raw spike data recorded from rhesus monkey's motor cortices have revealed
that the monkey's arm trajectory is encoded in the averaged discharge rates. Hebb hypothesized

24




in 1949 that the basic information processing unit in the cortex is a cell assembly which may
include thousands of cells in a highly interconnected network [24]. This cell-assembly hypothesis
shifts the focus from a single cell to the complete network activity. In our studies, information
from 81 cells or around 16 cells (corresponding to single or multichannel recording, respectively)
in the monkey's motor cortex has been used to predict its arm movement directions using a
SOFM model. Our results show that a limited number of neuronal cells have characterized the
monkey's motor cortical activities quite well in a spiral arm movement and in 3D reaching
movement. Other studies using different neural ensemble analyses, such as synfire chain [10] and
multi-cell correlation [25], have also revealed the significance of the amount of information
provided by local measurements with a limited number of cells in the associative cortex. It is
quite intriguing that a small set of cells could present the hypothesized cell-assembly quite well
in certain tasks.

This research is aiming at revealing the correlation between the neuronal discharge patterns with
arm movement directions, and possibly further more, other information encoded in the discharge
patterns such as movement speed, curvature, etc. Our preliminary results this far have shown
promises of using SOFM as a computational tool to achieve the above objective. In particular
due to the nonlinear nature of the network, the complex correlation between discharge rates and
movement information are not confined by some linear relations as the population vector
algorithm, the OLE method, or others. Furthermore, the SOFM does not require preferred
directions of individual cells as prerequisites.
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