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Abstract

The chance that a change in excitability of one neuron leads to a change in excitability of another is likely to vary within a
single volitional act. This temporal variability in functional connectivity is impossible to assess with standard analytical
procedures to accurately that measure the correlation between such elements. This reports describes a technique designed to
overcome this limitation by expressing a correlation measure calculated repeatedly in short epochs throughout a behavioral trial.
The activity. of two elements, a motor cortical neuron and a shoulder muscle, that might take place during a drawing task was
first simulated :so that the correlation could be manipulated. Various correlation algorithms (standard cross-correlation,
spike-triggered average, impulse-response function, impulse-response surface) were tested with these data. Spike trains from a
monkey’s metor, cortex and rectified EMG from its posterior deltoid muscle were compared using the same techniques and

shown to have a correlation that changed in a characteristic manner throughout a task that required the monkey to draw a

sinusoid.

Keywords: Spike-iriggefed average; Time-varying correlation; Effective connectivity; Motor cortex

1. Introduction

Correlation techniques aré commonly used to de-
duce functional connectivity within neuronal circuits
and between neurons: and muscles. If a correlation
between two elements’ exists then, depending on the
timing relation between them, theit possible location in
a circuit and their excitation-or'inhibition upon each
other can be obtained (Perkel et al., 1967b; Knox,
1974; Kirkwood, 1979; Aertsenand. Gerstein, 1985;
Houk et al., 1987). However such conclusions are sub-
ject to error because a consistent timing between ele-
ments may be mediated by different direct and indirect
circuits. At every synapse there is a large convergence
of presynaptic input. The probability that a single
presynaptic impulse will elicit a post-synapti¢c element
is dependent on the excitability of the other presynap-
tic elements. Because the threshold of membratie volt-
age at which an action potential is elicited is non-lin-
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ear, an anatomic connection does not guarantee func-
tional connectivity. This functional connectivity is time
dependent since the activity of the population of presy-
naptic inputs is likely to vary within the observation.
Standard techniques assume that data collected at one
point in time during the observation is inter-related the
same way at each point in time. The new ‘technique
reported here makes it possible to study correlation
between ‘variables that varies during the observation
period.

‘This problem has been approached in previous work
using- joint—post-stimulus “time histograms  (JPSTH)
(Palm et al., 1988). Coincidence in the time of action
potentials recorded from different pairs of cells was
measured as sensory stimuli were applied. This tech-
nique resulted in a 3-dimensional surface from which
the time variability of the correlation between spike
trains could be deduced. Various normalization proce-
dures can be applied to separate the coincidence due
to joint stimulus-related modulation from the ‘intrinsic
neuronal dependencies’ representing ‘effective connec-
tivity’. These two: contributions to coincidence have
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been referred to as the ‘secondary and primary effect’
elsewhere (Klrkwood 1979). This analysis depends on
the fact that spike trains are point processes — within
each bin there either is or is not a spike occurrence.
This technique cannot be applied easily to the compar-
ison of a spike train to a continuous signal such as that
encountered when recording whole-muscle EMG.

We wished to examine the relation between single-

unit activity in the: primary motor cortex to EMG

activity of the proximal arm muscles as a monkey
performed drawing tasks (Schwartz, 1992). Specifically,
we wanted to know whether a given neuron—muscle
correlation would vary in time. It is kiown in non-hu-
man primates (Landgren et al., 1962; Kuypers, 1981),
that although both a multi- and monosynaptic pathway
from motor cortex to the motoneurons of the distal
extremities exist, the pathway to the proximal arm
muscles is solely multisynaptic. Since the question we
are asking is primarily functional instead of anatomical,
it was necessary to develop a technique that was sensi-
tive enough to detect multisynaptic changes in activity
that consistently covaried, to separate the covariation
due to common modulation from that related to the
interaction between the recorded neuron-muscle pair
and to observe this covariation in time, This technique
measures the temporal association between excitability

changes in two elements and the results of the analysis'
could yield insight as to how one element contributes

to the changes in excitability of the other.

One of the problems in detectlng correlation be-
tween two time-varying neurologlcal signals is that any
periodic variation within the individual signals will tend
to contribute-to the correlation between the signals if
the period of modulation is on the same order of
magnitude as the analysis epoch. . This type of common
modulation was. especially. important in outr experi-
ments since the monkeys performed sinusoidal drawing
movements with periods of 0.3-1 s.:Both the cortical
cells :and the proximal arm muscles tended to increase
their activity once per cycle. This periodic modulation
will be manifest as a prominent feature in the result of
standard. correlations. This broad effect may obscure
other structure in the cross-correlation (‘secondary ef-
fect’) (Knox, 1974; Kirkwood, 1979).

Periodic contribution to the cross-correlation can be
removed by using the impulse~response function (IRF)
to describe the interaction between two signals.: This
function was originally developed: in -linear systems
analysis to describe transfer functions. The impulse-
response is the idealized response of a system to a
pulse of constant amplitude that has an infinitely short
duration. Such a system was used by Humphrey (1972)
for relating motor cortex activity to the generation of
torque. The technique was applied to neuronal activity
by Soechting et al. (1978) as a measure of correlation
between an input (interpositus activity) and .an output

(red nucleus activity) and reviewed by Ho
(1987). Although this function was develope
ing linear systems, we use it here as a way to. re
periodic changes in the input signal that mlght con-
tribute to the comparison between input and output.
In order tovisualize the changes between motor
cortical activity and proximal-arm EMG that might
take place, we calculated the impulse-response func-

. tion; in: merﬁa@ﬁajﬁg 350-ms windows. throughout the
task. This; resulted in a surface we termed the

(i _
pulse—respOnSé sutfdee’ that showed the evolution of
the impulse—-response function in absolute time through

the drawing task. This technique as well as standard

cross-correlation., and spike-triggered averaging were

compared and tested with simulated data, In the simu-
lation, the correlation between spike and EMG could
be specified for particular epochs.

2. Methods
2.1. Simulations
A 2-s spike train was s‘imulated‘ in. which firing

frequency was modulated sinusoidally. A :probability—
density function, consisting of 300 values (0.5 <P <

10.9), was first mapped to the'2:cycle sinusoid. A ran-
* dom hiumber between '0-and 1'was chosen for each of

the 300 bins. If the generated probability for the bin
exceeded this value, a spike was placed in the bin. This
resulted in a sinusoidally modulated spike train where
the instantaneous discharge frequency varied between
4 and 167 Hz. EMG activity was then simulated by
associating a TTL pulse (1-ms duration) with each
spike. In one condition the pulse was concurrent with
the spike. In other conditions, a gaussian distribution
determined the placement of the: EMG pulse relative
to the spike. The standard deviation of the distribution
could be varied to control the uncertainty of the time
span. between the spike and the EMG trigger. The
pulse was used as an input to the recording amplifier
and filters: used to record- the actual data. The simu-
lated «data made it possible to test the analytical tech-
niques with conditions. where the correlation between
splke a;nd EMG varied in a known manner. ‘

2.2, Behaworal task and data acquisition

A rhesus monkey was seated in front of a graphics
monitor with its head fixed and one arm restrained.
With its index finger on a touch screen placed over a
graphics monitor, the animal traced sinusoids that
spanned the entire horizontal -extent. of the screen
oriented in the frontal plane. The sinusoids had peak-
to-peak amplitudes that ranged from 3 to 12 cm and
spatial frequencies between 0.053 and 0.21 cycles /cm.
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Each of 5 different waveforms were traced from both
the right and left sides of the screen. The sinusoids
were presented in a random order within blocks where
each of the sinusoids was presented once. Each sinu-
soid pattern was repeated 5 times in this randomized
block design. The experimental design and recording
methods are described in more detail in an earlier
paper (Schwartz, 1992).

Single-unit motor cortical activity was recorded with
an extracellular microelectrode and the time of spike
occurrence relative to the start of the trial was recorded
using an amplitude discriminator and timer /buffer in-
terface. All data were analyzed on a trial-by-trial basis.
For the auto- and cross-correlations the spike counts
were binned. A method used to convert the spike
count per bin to a continuous spike density function

(Richmond et al., 1987; Schwartz, 1992) was compared .

to-a standard method of dividing the bin count by the
bin width. Since there was no difference between the
two méthods for these data, the pattern of neuronal
activity’ was converted to a series of instantaneous
frequencies by binning the spikes and dividing the
number of spikes per bin by the bin duration. This
simple method may be imprecise for low spike rates
when long interspike intervals span the boundaries of
the bins. There are other problems associated with
converting a point process into a continuous signal
(French’'and Holden, 1971). These are due primarily to
the binning process which can lead to discontinuities in
frequency if the bin width is too small and to high
frequency attenuation if too wide. However, for the
time scale examined in this study, these issues are not
problematic. *

EMG activity recorded with b1polar electrodes was
amplified, rectified, and integrated with a Paynter filter
(7 = 50 ms) and recorded at 10-ms intervals. This filter,
in ‘addition to removing high frequency components
from the signal, produces a delay. Its response to an
impulse (1-ms TTL pulse) begins 6 ms after the pulse,
reaches a peak in 20 ms, decays rapidly in the next 20
ms and then to its baseline value with a slower time
constant over the next 60 ms (Fig. 1D). Compared to
an ideal filter simulated with a 10-ms square wave, the
Paynter filter shifted the data by approximately 25 ms
and reduced .the high-frequency components in the
correlations. Activity from the following muscles was

recorded: anterior, medial and posterior deltoids, long

head of triceps and biceps.

The fast-Fourier transforms (FFT) that were em-
ployed later in the analysis were most efficient if the
input vector length was a product of small prime num-
bers. In the simulation we chose to divide the data into
221 bins. The real data were divided into 143 bins. The
- mean duration over the 5 repetitions of each condition
was found and the individual trials were normalized in
time using a spline function to this mean duration. This

resulted in bin widths of 14 ms for the simulated data
and 10 ms for the real spike data. The EMG data
although collected at 10-ms intervals, was normalized
in the simulations to the same number of points as the
number of spike bins.

2.3. Analyses

2.3.1. Correlations

Auto- and cross-correlations were calculated con-
ventionally using the binned spike count of the cortical
unit and the rectified-filtered waveform of the EMG.
The cross-correlations were estimated using the follow-
ing formula:

Fey(7) = €4y (7) /[ €22(0) €, (0)]

1/2

r=0,+1,...,x7T

(1)

where 7 is the lag represented as some time interval or
bin. The terms c, (0) and ¢, (0) are the autocovari-
ance for x and y (equlvalent to the sample variance of
each term) at zero lag. The cross-covariance function

Cay(T)
was estimated by the following equations, according to
the positive and negative lag values:

xy("')’:_ Z (xt x)(yt+1 y) r=0,1,...,T (2)
t==1

euy(7) =1/n zl‘. (%, ~%)(r1r—F)

r=-1,-2,...,T (3)

T is the maximum lag value and ¥ and y are the mean
x and y values, respectively. The estimated autocovari-
ance function was found using the same equations by
substituting the desired variable for the other. Correla-
tions were carried out on a trial-by-trial basis. The
resulting correlograms plotted the different values of
for each lag 7. Each simulation and behavioral trial
was repeated 5 times. These calculations were per-
formed on each trial and the results were then aver-
aged across repetitions. ‘

; rzggered average

rrence of a spike served ‘as a trigger to
lign a ségment of EMG data ranging from & ms
before to & ms after each spike. This was carried out
for each spike that was at least & ms from the begin-
d of the trial. An average was then calcu-
 the values of corresponding bins for all
gménts and dividing by the number of

2.3.3. Impulse—response function
The cross-correlation between the spike train and
the EMG data and the autocorrelation of -the spike
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train were converted from the time to' the frequency
domain using a FFT to yield the corresponding cross-
spectrum and autospectrum (Eq. 4). This was done by
applying a- Hamming window to the icorrelations to
remove extraneous frequencies (‘leakage’ (Ramirez,
1985)) encountered by using a non-infinite signal. The
impulse-response function is obtained by dividing the
cross-spectrum by the autospectrum:of ‘the spike train
(Eq. 5) and taking the inverse transform (Eq. 6) of the
result to convert it to the: time! domain (Soechting et
al.,; 1978). It should be noted ‘that the correlograms in
the time domain begin with -negative lag values and
since the FFT is constructed to: operate on an input
with a range of 0-T, it is necessary to exchange the
negative and positive ‘halves of ‘the tihe series after
taking the inverse transform. -

Cxy(7) © €4 (F); Coa(7) (_)cxx(f) 4

xy(f) v ,
W ®
H(f) A7) N ®
3. Results

3.1. Simulations

Five repetitions of a 2-cycle sinusoidally modulated
spike train are simulated in Fig. 1. The-zaster in Fig.

1A shows the time of occurrence of each spike relative

to the beginning of the trial with a vertical tic mark:
Each repetition is shown on a different horizontal line.

The pattern is similar between trials, but the. exact .

placement of the spike in time varies random

These data are collapsed into a hlstogrann, Fig.. 1B \
and plotted with the same time scale as Fig.'1A. This
function was calculated with 14-ms bins and shows the
probability of discharge (in' units of firing rate) at a-

given instant in the task. The simulated cell was most

likely to fire at 250 and 1250 ms after the begmnmg of:

the trial.

An autocorrelation of this spike traln was calculated
for each repetition and the average across repetitions’

is displayed in Fig 1C. This calculation expresses the

likelihood that given a spike at time 0, another spike

would occur at a latency of 7 ms. The abscissa is lag
time and the peak at 7 =0 results from the certainty
that a spike always occurs at 7=0. The structure in
this correlation histogram (correlogram) is primarily
the result of the sinusoidal modulation of the spike
train, which has a period of 1 s. There are also smaller
peaks near the origin showing that there are other

inherent periodicities in the signal. The first peak is 60,

the second 150, and the third 210 ms from the origin.

Evident in the autocorrelations of the individual repe-
titions. are sharper peaks about 30 ms apart. This
suggests that there is a 30-ms periodicity in the spike
train.

The simulated EMG activity resultmg from this sim-
ulated spike is shown in Fig, 1D. A TTL trigger pulse
generated after each spike was passed through the
recording amplifier and Paynter filter. This .analog
signal was collected with the laboratory interface and
stored as simulated EMG. The response of the filter to
the TTL pulse has a rapid -onset with a slightly pro-
longed initial decay followed by a longer decay when
the response was within 10% of its peak amplitude. All
5 repetitions of the spike train were used in this
simulation, with the result displayed in Fig. 1E as the
average. The autocorrelation of this EMG is shown in
Fig. 1F. It has the same low-frequency component as
the spike train autocorrelation and corresponds to the
rhythmic signal in Fig. 1B. ’

Three different methods of displaying the relation-
ship between these signals are shown in Fig. 1G-1. The
spike-triggered average (STA) of this simulation is
shown in Fig. 1G. EMG segments beginning 600 ms
before and ending 600 ms after each spike were used
to construct the average. In the average there is a
prominent peak -at approximately 7 =30 ms and the
low-frequency component of the signal is the same as
that seen in Fig. 1A-C, E-F. The STA is built from
individual spike occurrences in contrast to the cross-
correlation which is based on binned data. Therefore

~the features in the STA will tend to be less smooth

than those in the corresponding cross-correlogram. The

.. sharp, higher-frequency peaks superimposed on the

low-frequency component may be due to the 30-ms
component of rhythmic modulation in the spike train

‘seen in its autocorrelation (Fig. 1C) and to the 25-30

ms delay of the EMG pulse to the simulated spike. The
cross-correlation (Fig. 1H) was calculated trial-by-trial
using the instantaneous frequency of the spike train
and the simulated: EMG data. Since the spike data
were binned at 10-ms intervals and the analog EMG

- was also sampled at this interval, both signals could be
- considered sampled at.a 100 Hz rate. The peak of the

correlogram occurs at = =30 ms. This is the primary
effect due to this deterministic simulation in which the

~same: pulse of EMG follows every spike at a fixed

latency. The position of the peak suggests that, on
average, the EMG pulse peaks 30 ms after the spike.
The periodicity seen in the autocorrelation is also
evident here as the secondary effect due to the peri-
odic modulation of each signal. In Fig. 1I the
impulse-response function for these data is shown.
Again the prominent peak at =30 ms is apparent.
Notice there is no periodic component to the
impulse~response correlogram. Strictly speaking, the
relationship depicted by the impulse-response func-
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tion is not a correlation, but we will use a looser
interpretation of the term to the result of this calcula-
tion. A single peak is clearly discernable and repre-
sents the ‘effective connectivity’ between the simulated
cell and muscle. This is much more useful in this
regard than either the STA or conventional cross-cor-
relation. The ability of the IRF to recover the idealized
impulse can be ascertained by comparing the response
shown in Fig. 1I to that of Fig. 1D. The impulse-re-
sponse in Fig. 1D is the output of the rectifier-Paynter
filter system to a single 1-ms TTL impulse.

The way the correlation changes in time is illus-
trated in the impulse-response surface of Fig. 2. The
EMG and spike data were divided into overlapping
350-ms segments. The beginning of each successive
segment was offset from its predecessor by 10 ms. The
impulse—response function was calculated in each data
segment and this correlogram was plotted perpendicu-
lar to the time axis at the point in time that the data
segment began. This dimension along the correlogram,
perpendicular to the time axis, has units of lag time 7
and ranges from + 175 ms. The time axis shows abso-
lute time 7, through the trial. The peak in the im-
pulse—response again occurred at 7 =30 ms lag and
was nearly constant throughout the trial, forming a
ridge in the surface. The upper trace in the panel

behind the surface displays the spike histogram and the
lower trace of the panel is the average EMG.

Simulated EMG was again derived from filtered
TTL pulses using the spike train shown in Fig. 1A.
However the EMG trigger pulses were placed relative
to each spike using a gaussian distribution centered 20
ms after each spike with a SD of 60 ms. The shape and
amplitude of all the EMG pulses were identical. This
condition was modeled to represent a multisynaptic
linkage between the spike and muscular activity. The
resulting EMG pattern is very similar to that of Fig.
1E. The STA of these data is shown in Fig. 3A which
shows that the distinction between the secondary mod-
ulation and the primary effect is not distinct when the
correlation between the two signals is weaker. The
cross-correlation between the spike train and EMG
activity is shown in Fig. 3B. The primary correlation,
which is now of smaller amplitude, is obscured by the
periodic secondary effect. The utility of the impulse—
response function is demonstrated in Fig. 3C where the
primary correlation is clear and the secondary effect is
absent.

The impulse—response surface calculated with the
data of Fig. 3A-C is shown in Fig. 3D. The peak is
wider and more variable than that seen in Fig. 2.

Intermittent correlation between spike and muscle

Fig. 2. Impulse—response surface. The top trace on the back panel is a histogram of the simulated spike train. The lower trace is an average of
the resulting EMG signal. The time axis of the surface spans the duration of the spike sequence, ranging from 7 =0 to 2000 ms. The surface
itself was calculated from T = 175 — 1825 ms to allow for a maximum lag of 175 ms between spike and EMG. The surface was produced by
calculating the impulse—response function in successive 350-ms sliding windows. A ridge in the surface of fairly constant amplitude and constant
lag of 30 ms, showed that the simulation resulted in a stationary relation between the spikes and EMG.
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activity was simulated in Fig. 4. The spike activity and
EMG are completely correlated in a window from
T=1000 to T= 1500 ms. At all other times through
the trial the two signals are related by the same gauss-
ian function used in Fig. 3. The STA in Fig. 4A is very
similar to that of Fig. 3A except for a small narrow
component at 7=40 ms riding on the large low-
frequency waveform. Any component resulting from
primary interaction is obscured by the large secondary
modulation in the cross-correlation of Fig. 4B. The
primary interaction is evident in the impulse-response
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shown in Fig. 4C. There is little difference between
these waveforms and those of Fig. 3 where there was
no window of high correlation. These waveforms (A-~C)
are more similar to those of Fig. 3 than those displayed
in Fig. 2 because in 3/4 of the trial the interaction
between the spike train and the EMG signal was
governed by the wide gaussian distribution.

The temporal evolution of the spike—-EMG relation-
ship and the change in spike~-EMG correlation is shown
in Fig. 4D,E. This surface shows the epoch in the trial
when the two signals are more correlated. There is a

Fig. 3. Comparison of simulated spike train to EMG pulsed generated with a gaussian distribution. A pulse of EMG was triggered after each
spike according to a gaussian distribution centered 20 ms after each spike. The distribution had a standard deviation of 60 ms. A: the STA of this
simulation shows little evidence of a primary effect. The low-frequency component of the average representing the secondary effect has a 1-s
period. B: there is also no evidence of primary correlation in the cross-correlogram. C: the impulse—response function shows a peak of positive
correlation at r = 40 ms that is somewhat wider and smaller than that seen in Fig. 1. The impulse-response surface of this gaussian simulation is
shown in (D). The ridge in the surface structure is still evident, but is wider, of smaller amplitude and is more variable for the less correlated

result of this simulation.
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ridge that begins at T = 850 ms, peaks at T = 1250 and
ends at approximately T =1650. The epoch of in-
creased correlation in the simulation began at T = 1000
ms and ended at T = 1500 ms. Since the sliding win-
dow in which the impulse function was calculated was
+175 ms, the boundary between the more correlated
and less correlated signals was stretched in time. When
the sliding window is completely contained in the epoch
of increased correlation, the value of the impulse—re-
sponse will be the greatest. As the window advances
beyond this epoch, the impulse-response function de-
creases gradually. The use of a shorter duration win-
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dow would make it possible to detect the onset of a
correlated epoch more precisely (see Fig. 7).

3.2. Empirical data

The raster and histogram of activity from a motor
cortical cell recorded while a monkey traced the sinu-
soid in Fig. SA are shown in B and C. The sinusoid was
traced from left to right. This response encodes the
direction of arm movement and is typical of many cells
found in the motor cortex. An analytical approach has
been developed (Schwartz, 1992) which shows that

900 1160 300 1500

Time {msec)

Fig. 4. Simulated transient correlation. Complete correlation was simulated during each trial in the epoch form 7'=1000 to T = 1500 ms. At all
other times the gaussian function was used to place the EMG pulses. A: STA of intermittent correlation. B: cross-correlation of intermittent
correlation. C: impulse~response function of intermittent correlation. In each case the result is similar to the gaussian simulation illustrated in
Fig. 3. The impulse—response surface of this intermittent correlation is shown in (D) and (E). The two views of the surface show that the
correlation between simulated spike and EMG activity increased from approximately 7 = 1100 to T = 1400 ms.
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these cells tend to fire fastest in their ‘preferred’
direction' of arm movement. The preferred direction
for this cell’s activity was at 50° from the horizontal
(when the monkey moved its finger up and to the
right). The EMG of the posterior deltoid muscle (Fig.
SE) was analyzed in a similar fashion. The peak activity
of this muscle occurred when the direction of move-
ment was 157° (up slightly and to the left).

An analysis (Schwartz, 1992) of the directional infor-
mation in the activity pattern showed that this cell

changed its rate of discharge about 160 ms before
movements were made in the corresponding direction.
Similarly, the direction-related muscle activity tended
to precede movements in the corresponding direction
by 70 ms. As the figure was traced rightward across the
screen, the cell tended to discharge as the movement
direction approached 50°. The activity of the cell and
the muscle increased and decreased 3 times at 800-900
ms intervals during the drawing of the sin. .oid. An
approximation of the relative timing between the two

Fig. 6. Impulse—response surface: empirical data. Two views (A and B) of the surface are presented. The dotted line at T'= —200 ms represents

600

Time (msec)

800  f0Qc 1200 1400 {600 1800

1800

the average time of the sinusoid presentation. The data are aligned to movement onset. The top trace in the back panel is the average EMG, the

lower is a histogram of the spike activity. There are two epochs of positive correlation evident in the surface. One epoch of correlation is located

in time at T = 0-300 ms, the other ranges from 900-1200 ms.
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Fig. 7. Effect of window size. A series of different duration windows were used in the calculation of each surface. The window in (A) was 110 ms,

(B) 210 ms, (C) 310 ms, (D) 410 ms and (E) 510 ms. The surface features became evident in (B) and were gradually washed out as the duration of
the window increased.
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can be ascertained by noting that the middle cycle
began to increase in neuronal activity about 250 ms
after movement onset and at about 450 ms for the
muscle (Fig. 5E). Based on the histograms, the cell

activity would be expected to Iead that of the muscle by . -

approximately 200 ms.’

If the neuron and muscle possessed the same pre-“‘

ferred direction, the latency between their two activity
patterns would be expected to be 90 ms. However,
since the direction of movement associated with maxi-
mal muscle activity and that associated with maximal
neuronal activity occur sequentially, an additional la-
tency must be considered. These considerations as well

as the pitfalls: ‘of using hlstograms to describe relative.:
activity illustrate the utility of a method that allows the

relationship between spike and muscle activity to be
directly visualized in absolute time.

The autocorrelation (Fig. 5D) of the spike activity
reflects the 1-s period of modulation in discharge rate.
The EMG activity had a period of 800 ms (Fig. 5F).
STA (Fig. 5G) of these signals suggests that the cell
tends to fire at the peak of the cyclic muscle activity.

The cross- correlat;on (Fig. 5H) shows positive correla- -
tion for the time interval from 100 before to 350 ms’, .
after each spike with a peak at 180 ms and a- cychc
period of 1 s. This measure of correlation shows that
the EMG activity tended to follow-the spike by 180 ms
(ignoring filter characteristics). This timing relation can .

be more clearly recognized in the impulse-response
function (Fig. 51) in the absence of the secondary
effects caused by the periodic modulation of the sig-
nals. Now there is only a single peak at 7= 180 ms.
The plots‘in Fig. 5G-I show the average correlation
of these signals throughout the task. In order to visual-

ize the changes in correlation within the task it is

necessary to plot this correlation on an absolute as well
as a relative time axis. The surface shown in Fig. 6
expresses the result of this analysis. Behind the surface
the spike and EMG histograms are plotted in absolute
time. The origin on the time axis coincides with move-
ment onset. The dotted vertical line at approximately

= — 200 shows the average time in the trial when the
sinusoid was presented. There were two prominent
epochs of correlation represented by this surface as

elevated ridges at T =0-300 ms and at-T =900-1200
ms. These areas are similar in that they both begin -

approximately at 7 =0 and have a duration of 60-100

ms. The relation of this structure to the spike and

EMG pattern can be seen better with the orientation
shown in Fig. 6B. The peaks in correlation are not
simply related to excitability; the epochs of positive
correlation span transitions where both the cell and
muscle go from an active to inactive state. This in-

crease in correlation occurs in the same part of the

traced sinusoid starting before and ending after the
maximum vertical portion of the figure. This analysis

shows that it is likely that EMG and spike activity are
associated only when the finger is at the peak of each
cycle in the sinusoid.

The size of the window used to calculate the im-

: ‘pulse—response surface may affect the shape of the
. surface. If there is a punctate event where the correla-
“tion is high,surroundedby times where the correlation

is low, ‘the window size can either smooth and reduce
the size of the surface feature if the window is too
large or pick: up noisy correlatlons if too few data
points are used in a small-window. A small window will
also miss correlated events with large rs. Some of
these effects are illustrated with the series of surfaces
shown in Fig. 7. These are derived from the same data

. used in Fig. 5-6. The window size was varied from 110
" t0'510 ms in increments of 100 ms. In A the correlation
"lag varied from =50 to +50 ms and incorporated 11

data pomts, The surface is rather noisy but 3 epochs of
correlation may be dlStingulshed at times 0-300, 400-
600 and 900-1200. When the window was increased to

210 ms (Fig. 7B), the correlauon epochs became more

distinct. The major features occurred from 0-300 and
from 900-1200 ms. As the window was increased in
L the atures were smoothed out and became

4. Discussion -

Since we were pi‘i-mafilyintgrested in the long-term
interactions between the signals in a multisynaptic sys-
tem, we used relatively wide bin widths (10-16 ms)
over the-entire task which typically had a 2-s duration.
If shorter tlme scale interactions were of interest, the

_ bin width* could be reduced. By minimizing the sec-

ondary effects, it'is moré likely that the resulting struc-
ture in the 1mpulse~response function is due to more
direct interactions between the observed motor cortical
cell and EMG activity: The intervening neuronal struc-
tures and connections ¢annot be determined with this
technique and is not the purpose of this investigation.
Rather, we are interested in the tendency of the EMG
to change consistently (increase or decrease) with
changes i in spike rate.

mque of. applymg ‘correlation analys1s to

l dell and Henneman
and: mployed by Fetz et
.of motor cortical activity
“activity. The analysis was per-
formed by us1ng the splke occurrence to align each
sweep of rectified EMG activity before averaging. If
correlation between the two active elements existed,

_the resulting wave form would then show a transient

upward or downward deflection corresponding respec-
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tively to post-spike facilitation or inhibition. This tech-
nique became known as ‘spike-triggered avéraging’
(Watt et al., 1976). These initial investigations, as well
assmost of the subsequent work. using this technique,
examined: linkages that were primarily mono~ or disy-
naptic since the intermediate synapses:increase the
variability in timing between: the -neuronal spike and
any related change in muscle activity.:As; with most
other averaging techniques (Mooré: et -al., 1966) the
post-spike histogram can be interpreted-as:the proba-
bility of excitability in the recorded:muscle at a time 7
after the occurrence of the recorded spike.

+ The result of cross-correlation: analyses: (Box and
Jenkins, 1976; Chatfield, 1980) is a pyobability of joint
occurrence between two:events :allowing for some in-
tervening time lag. In the case:of continuous signals,
the ‘events’ can be considered increases or decreases in
the amplitudes of the signals.:In:the present case the
correlation measured represents:theipiobability that a
unit will increase its discharge: rate-inirelation to the
probability that EMG -amplitude iwill sinérease. A, posi-
tive correlation also: exists when ‘both probabilities de-
crease in tandem. The same’ 1nterpretat10n applies to
STA, although instead of dealing with two:continuous
signals the spike train is handled-asia point process.
Thus there may be a slight- difference: between the
techniques because the probability :of: discharge is de-
rived- from binned data which: introduces: smoothing
and some temporal uncertainty.-As: the iSTA is calcu-
lated, a spike that occurs without:-a -cotresponding
change in EMG amplitude will tend:to-erode any wave
form that is accumulating as the measure of ;post-spike
muscle exeitability. The resulting average is also a joint
probability. The results of our simulations show that
the STA and cross-correlation techniques provide out-
puts that are nearly identical. The differences between
the two techniques in a recent report (Miller et al.,
1992) was attributed to the separate filtermg and sam-
pling used for the data passed thl:ough éach analysis.
Unfiltered data collected at 0.25-ms.. intervals. were
used in the STA analysis and data. filtered with a 10-ms
time constant were sampled- at 200:Hz in:the cross-cor-
relation analysis. The conclusion of this study was that
two types of interaction between mbf@gﬁiﬁal cells and
muscles were occurring. The first, detected with STA,
was a short-latency interaction and the second, de-
scribed by the cross-correlation, was present at long,
variable lags. It should be emphasized that the large
differences between the cross- corgelatlon results and
those of the STA were a result of the way the data
were conditioned, not to 1nherent «differences in the
analytical techniques.

Perhaps the most serious issue of applymg correla-
tion techniques to active elements during a movement
task is that of stationarity. A process is considered
stationary if its mean and higher order statistical mo-

ments (i.e., cross-covariance) are fixed over the time
period for which  the observations are made (invariant
in time) and if there are no periodic variations in the
signal (Cox and Lewis, 1966; Perkel et al., 1967b;
Perkel et al., 1967a; Box and Jenkins, 1976; Glaser and
Ruchkin, 1976). An example of a stationary process
would be the thermal noise encountered when measur-
ing the impedance across an -electrical resistor held at a
constant temperature. It is unlikely, however, that
task-related neuronal or EMG activity is  stationary
throughout a volitional movement. This is evidenced in
the phasic. activity of motor cortical neurons and the
agonist—antagonist bursts of EMG throughout a reach-
ing task. When the correlation between a pair of sig-
nals varies within the observation period, application of
the standard correlation techniques will result in an
average representation of the correlation between the
signals during the observation due to the time integra-
tion in the analysis. For example, if there were a
positive correlation between the signals at one point in
the trial at a particular lag 7, and at some point later
in the trial there were a negative correlation at the
same lag 7,, the two would tend to average out so that
no structure would be evident in the correlogram. As
illustrated in Fig. 4, a transient correlation will also be
minimized by the standard correlation technique.
Methods that address this issue have been based on
the JPST scatterplots that expressed coincidence be-
tween (delayed) spike occurrences (Gerstein and

- Perkel, 1972). An adaptation of this technique applied

to the autocorrelation function for use on non-sta-
tionary . neuronal data was developed by Ebner and
Bloedel (1981). This ‘generalized autocorrelation func-
tion’ calculated the autocorrelation continuously in time
for cerebellar Purkinje cells. The result of this analysis
was plotted in 3 dimensions in such a way that absolute
time was preserved.. The autocorrelation could be
viewed as it changed in time and had a characteristic
structure demarcating a specific event, in this case
climbing fiber discharge. The method we present in
this paper is similar in that it also shows correlation
trends over time.

Palm et al., 1988) binned the counts in the JPST to
form a JPST histogram (JSPTH) which was also a 3D
surface. Various methods to normalize the surface in
order to remove the non-‘stimulus-time-locked varia-
tions in near-coincident firing’ were explored to isolate
the ‘genuine (rapid) modulations of activity and/or
connectivity.” This method involved calculating the ‘raw’
PSTH that contained indirect and direct contributions
to coincident firing and subtracting a ‘predictor’ of the
indirect effect due to statistical trends in the individual
spike trains. The ‘residual’ would then represent the
direct, ‘intrinsic neuronal dependencies’ that one neu-
ron could exert on another. The predictor was derived
by multiplying the PSTs from each cell together. The
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residual, when divided by the standard deviation of the
predictor, yielded a number between 0 and 1 and was

termed the ‘normalized PSTH.” A significance measure:

was devised by comparing the joint standard deviation
of the corresponding bins in the individual PSTHs to
the experimental JSPTH. ‘

The JSPTH relies on. a comparison 'between “two
point processes. The bin widths were chosen so that
each bin would contain, at most, one spike. This analy-
sis was ‘carried out on a short time scale (<1 s). In
contrast, we wished to compare a continuous EMG
signal to a point process -on a medium time scale
(1-1000's). - :

Our method of examining non-stationary data is to
divide the input time series into smaller, epochs and
carry out the analysis on each epoch (Priestly, 1965;
Perkel et al., 1967b). Although the signals in each
window may not be stationary, the division of data into
windows and the intra-window comparison reveals
temporal changes in correlation during the observa-
tion. The use of the impulse-response function is
advantageous compared to the standard cross-correla-
tion because it removes periodicities in the input signal
from the calculation (compare Fig. 1H-1). If the corre-
lation between signals remains constant through the
trial, then using the impulse—response surface is not
advantageous. This is the case for the simulations
illustrated in Fig. 1 where the impulse—response func-
tion calculated in each window is constant. The stand-

ard impulse-response function averaged over time gives

the same information as the impulse—response surface.

Itis unllkely that this type of constant relation exists
in real data on the time scale of the behavior examined
here. We were interested in the EMG- that occurred
consistently within 100 ms of each cortical spike. The
chosen bin width of 10 ms afforded the desired tempo-
ral resolution in the resulting correlogram. If higher
resolution correlograms are required, for instance, to
detect monosynaptic- connections, - then shorter bin
widths would be required. Since a continuous signal is
needed in this analysis, care must be taken in convert-
ing the spike train into instantaneous frequencies. As
described above, bin widths that approach the mean
interspike interval can be problematic. The intervals
that span a bin boundary must be accurately attributed
to each bin on a fractional basis with appropriate
filtering (so as not to cause a large phase shift) applied
to the intervals before conversion to spike frequency
(Kuypers, 1981). EMG data should be filtered mini-
mally for high-resolution analysis. Analog filters intro-
duce delays and non-linearities to the data that compli-
cate the interpretation of resulting analyses.

One issue not addressed in this study is significance
testing. Usually, in correlation analyses, a confidence
interval around the correlation coefficient is calcu-
lated. If this correlation interval encompasses a zero

value (null hypothesis), the data is considered uncorre-
lated. The impulse-response surface could be tested in
this fashion, using a bootstrap technique (Diaconis and
Efron; 1983). ‘One hundred surfaces could be calcu-
lated by randomly selecting (with replacement) n repe-
titions of 7. trials, The surfaces could then be rank-
ordered according to their RMS values from the mean
surface.:The surface that was ranked 95 would be
considered the 95th percent confidence interval. This
surface plotted: above and below the mean surface
would give: the .confidence for each bin-of the surface.

In dealing with a system as complex as that used to
control volitional movement, correlation techniques can
help identify: géneral features of organization. In the
absence: of-detailed ‘anatomical knowledge, these tech-
niques show whether-one part of the system changes its
activity with: that:of another: portion. Correlation tech-
niques in’ isolation cannot; however, prove causality.
This may be :of lesser: concern as causal issues are
becoming less impottant:in: neurescience. It is clear
through computational modeling -and neurophysiologi-
cal investigations of CNS systems that single events are
unlikely to ‘cause’ particular effects within a  dis-
tributed systent. It is unusual forthe functional linkage
between single elements:to be obligatory. As the tech-
nique described-in. this report shows, such functional
linkage can be transient, occurring only during brief
epochs within a movement. The inferences that can be
drawn by relating these epochs of correlation to other
time-related events may be useful in determining the
cooperative interaction of different structures within
the nervous system.
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